B. E. Acet, S. Yüksel Perktaş, E. Kılıç, On lightlike geometry of para-Sasakian manifolds, Scientific Work J., Article ID 696231, 2014.
D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, Vol. 509. Springer-Verlag, Berlin-New York, 1976.
B. E. Acet, E. Kiliç, S. Yüksel Perktaş, Some Curvature Conditions on a Para-Sasakian Manifold with Canonical Paracontact Connection, Int. J. of Math. and Math. Sci., Article ID 395462, 2012.
S. Kaneyuki, M. Konzai, Paracomplex structure and affine symmetric spaces, Tokyo J. Math., 8 (1985), 301-318.
S. Kaneyuki, F. L. Willams, Almost paracontact and parahodge structure on manifolds, Nagoya Math. J., 99 (1985), 173-187.
S. Sasaki, On differentiable manifolds with certain structures which are closely related to almost contact structure I, Tôhoku Math. J., 12 (1960), 459-476.
I. Sato, On a structure similar to the almost contact structure I., Tensor N. S., 30 (1976), 219-224.
I. Sato, On a structure similar to the almost contact structure II., Tensor N. S., 31 (1977), 199-205.
T. Takahashi, Sasakian manifold with pseudo-Riemannian metric, Tôhoku Math. J., 21 (1969), 644-653.
N. Tanaka, On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connection, Japan J. Math., 2 (1976), 131-190.
S. Tanno, Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc., 314 (1989), 349-379.
S. M. Webster, Pseudo-Hermitian structures on a real hypersurfaces, J. Diff. Geo., 13 (1979), 25-41.
J. L. Cabrerizo, L. M. Fernandez, M. Fernandez, G. Zhen, The structuren of a class of K-contact manifolds, Acta Math. Hungarica, 82 (1999), 331-340.
K. Yano, Concircular geometry I , Concircular transformations, Proc. Imp. Acad.Tokyo, 16 (1940), 195-200.
K. Yano, S. Bochner, Curvature and Betti numbers, Annals of Mathematics Studies 32, Princeton University Press, 1953.
K. Yano, Affine connexions in almost product spaces, Kodai Math. Sem. Rep., 11 (1959), 1-24.
K. Yano, M. Kon, Structures on Manifolds, Series in Pure Math., Vol 3,World Sci, 1984.
S. Zamkovoy, Canonical connection on paracontact manifolds, Ann. Glob. Anal. Geo., 36 (2009), 37-60.
On para-Sasakian manifolds with a canonical paracontact connection
Year 2016,
Volume: 4 Issue: 3, 162 - 173, 30.09.2016
The object of the present paper is to study a
para-Sasakian manifold with a canonical paracontact connection. We prove that conformally flat, concircularly flat and projectively flat para-Sasakian manifolds with respect to canonical
paracontact connection are all Einstein manifolds. Also, it is shown that a quasi-concircularly flat
para-Sasakian manifold is of constant scalar curvature.
B. E. Acet, S. Yüksel Perktaş, E. Kılıç, On lightlike geometry of para-Sasakian manifolds, Scientific Work J., Article ID 696231, 2014.
D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, Vol. 509. Springer-Verlag, Berlin-New York, 1976.
B. E. Acet, E. Kiliç, S. Yüksel Perktaş, Some Curvature Conditions on a Para-Sasakian Manifold with Canonical Paracontact Connection, Int. J. of Math. and Math. Sci., Article ID 395462, 2012.
S. Kaneyuki, M. Konzai, Paracomplex structure and affine symmetric spaces, Tokyo J. Math., 8 (1985), 301-318.
S. Kaneyuki, F. L. Willams, Almost paracontact and parahodge structure on manifolds, Nagoya Math. J., 99 (1985), 173-187.
S. Sasaki, On differentiable manifolds with certain structures which are closely related to almost contact structure I, Tôhoku Math. J., 12 (1960), 459-476.
I. Sato, On a structure similar to the almost contact structure I., Tensor N. S., 30 (1976), 219-224.
I. Sato, On a structure similar to the almost contact structure II., Tensor N. S., 31 (1977), 199-205.
T. Takahashi, Sasakian manifold with pseudo-Riemannian metric, Tôhoku Math. J., 21 (1969), 644-653.
N. Tanaka, On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connection, Japan J. Math., 2 (1976), 131-190.
S. Tanno, Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc., 314 (1989), 349-379.
S. M. Webster, Pseudo-Hermitian structures on a real hypersurfaces, J. Diff. Geo., 13 (1979), 25-41.
J. L. Cabrerizo, L. M. Fernandez, M. Fernandez, G. Zhen, The structuren of a class of K-contact manifolds, Acta Math. Hungarica, 82 (1999), 331-340.
K. Yano, Concircular geometry I , Concircular transformations, Proc. Imp. Acad.Tokyo, 16 (1940), 195-200.
K. Yano, S. Bochner, Curvature and Betti numbers, Annals of Mathematics Studies 32, Princeton University Press, 1953.
K. Yano, Affine connexions in almost product spaces, Kodai Math. Sem. Rep., 11 (1959), 1-24.
K. Yano, M. Kon, Structures on Manifolds, Series in Pure Math., Vol 3,World Sci, 1984.
S. Zamkovoy, Canonical connection on paracontact manifolds, Ann. Glob. Anal. Geo., 36 (2009), 37-60.
Acet, B. E., & Perktaş, S. Y. (2016). On para-Sasakian manifolds with a canonical paracontact connection. New Trends in Mathematical Sciences, 4(3), 162-173.
AMA
Acet BE, Perktaş SY. On para-Sasakian manifolds with a canonical paracontact connection. New Trends in Mathematical Sciences. September 2016;4(3):162-173.
Chicago
Acet, Bilal Eftal, and Selcen Yüksel Perktaş. “On Para-Sasakian Manifolds With a Canonical Paracontact Connection”. New Trends in Mathematical Sciences 4, no. 3 (September 2016): 162-73.
EndNote
Acet BE, Perktaş SY (September 1, 2016) On para-Sasakian manifolds with a canonical paracontact connection. New Trends in Mathematical Sciences 4 3 162–173.
IEEE
B. E. Acet and S. Y. Perktaş, “On para-Sasakian manifolds with a canonical paracontact connection”, New Trends in Mathematical Sciences, vol. 4, no. 3, pp. 162–173, 2016.
ISNAD
Acet, Bilal Eftal - Perktaş, Selcen Yüksel. “On Para-Sasakian Manifolds With a Canonical Paracontact Connection”. New Trends in Mathematical Sciences 4/3 (September 2016), 162-173.
JAMA
Acet BE, Perktaş SY. On para-Sasakian manifolds with a canonical paracontact connection. New Trends in Mathematical Sciences. 2016;4:162–173.
MLA
Acet, Bilal Eftal and Selcen Yüksel Perktaş. “On Para-Sasakian Manifolds With a Canonical Paracontact Connection”. New Trends in Mathematical Sciences, vol. 4, no. 3, 2016, pp. 162-73.
Vancouver
Acet BE, Perktaş SY. On para-Sasakian manifolds with a canonical paracontact connection. New Trends in Mathematical Sciences. 2016;4(3):162-73.