Research Article
BibTex RIS Cite

Coefficient bounds for new subclasses of bi-univalent functions

Year 2016, Volume: 4 Issue: 3, 197 - 203, 30.09.2016

Abstract



In the present paper, introduction of new subclasses
of bi-univalent functions in the open disk was defined. Moreover,by using
Salagean operator,in these new subclasses for functions, upper bounds for the
second and third coefficients were found. Presented results are a
generalization of the results obtained by Srivastava et al.[12], Frasin and
Aouf [7] and Çağlar et al.[5].




References

  • Altankaya Ş., Yalçın S., Faber polynomial coefficient bounds for a subclass of bi-univalent functions, Stud. Univ. Babeş-Bolyai Math. 61 (1) (2016) 37-44.
  • Altankaya Ş., Yalçın S., Faber polynomial coefficient bounds for a subclass of bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I 353 (12) (2015) 1075-1080.
  • Ali R.M., Lee S.K., Ravichandran V. , Supramaniam S., Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Applied Mathematics Letters, 25 (2012) 344-351.
  • Brannan D.A., Taha T.S., On some classes of bi-univalent functions, in: S.M. Mazhar, A. Hamoui, N.S. Faour (Eds.), Mathematical Analysis and Its Applications, Kuwait; February 18-21, 1985, in: KFAS Proceedings Series, vol. 3, Pergamon Press, Elsevier Science Limited, Oxford, 1988, pp. 53-60. See also Studia Univ. Babeş-Bolyai Math. 31 (2) (1986) 70-77.
  • Çağlar M., Orhan H. and Yağmur N., Coefficient bounds for new subclasses of bi-univalent functions, Filomat 27(7) (2013),1165-1171.
  • Duren P.L., Univalent Functions, in: Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
  • Frasin B.A. and Aouf M.K., New subclasses of bi-univalent functions, Applied Mathematics Letters, 24 (2011), 1569-1573.
  • Lewin M. , On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967) 63-68.
  • Netanyahu E., The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z|<1, Arch. Rational Mech. Anal. 32 (1969) 100-112.
  • Salagean G.S., Subclasses of univalent functions, Lecture Notes in Math., Springer, Berlin, 1013, 362-372, 1983.
  • Srivastava H. M., Bulut S., Çağlar M., and Yağmur N., a Coefficient estimates for a general subclass of analytic and biunivalent functions, a Filomat, vol. 27, no. 5, pp.831-842, 2013.
  • Srivastava H.M., Mishra A.K. and Gochhayat P., Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010) 1188-1192.
  • Srivastava H.M. , Sümer Eker S. , Ali RM., Coefficient bounds for a certain class of analytic and bi-univalent functions. Filomat 29 (2015) 1839-1845.
  • Taha T.S., Topics in Univalent Function Theory, Ph.D. Thesis, University of London, 1981.
Year 2016, Volume: 4 Issue: 3, 197 - 203, 30.09.2016

Abstract

References

  • Altankaya Ş., Yalçın S., Faber polynomial coefficient bounds for a subclass of bi-univalent functions, Stud. Univ. Babeş-Bolyai Math. 61 (1) (2016) 37-44.
  • Altankaya Ş., Yalçın S., Faber polynomial coefficient bounds for a subclass of bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I 353 (12) (2015) 1075-1080.
  • Ali R.M., Lee S.K., Ravichandran V. , Supramaniam S., Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Applied Mathematics Letters, 25 (2012) 344-351.
  • Brannan D.A., Taha T.S., On some classes of bi-univalent functions, in: S.M. Mazhar, A. Hamoui, N.S. Faour (Eds.), Mathematical Analysis and Its Applications, Kuwait; February 18-21, 1985, in: KFAS Proceedings Series, vol. 3, Pergamon Press, Elsevier Science Limited, Oxford, 1988, pp. 53-60. See also Studia Univ. Babeş-Bolyai Math. 31 (2) (1986) 70-77.
  • Çağlar M., Orhan H. and Yağmur N., Coefficient bounds for new subclasses of bi-univalent functions, Filomat 27(7) (2013),1165-1171.
  • Duren P.L., Univalent Functions, in: Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
  • Frasin B.A. and Aouf M.K., New subclasses of bi-univalent functions, Applied Mathematics Letters, 24 (2011), 1569-1573.
  • Lewin M. , On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967) 63-68.
  • Netanyahu E., The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z|<1, Arch. Rational Mech. Anal. 32 (1969) 100-112.
  • Salagean G.S., Subclasses of univalent functions, Lecture Notes in Math., Springer, Berlin, 1013, 362-372, 1983.
  • Srivastava H. M., Bulut S., Çağlar M., and Yağmur N., a Coefficient estimates for a general subclass of analytic and biunivalent functions, a Filomat, vol. 27, no. 5, pp.831-842, 2013.
  • Srivastava H.M., Mishra A.K. and Gochhayat P., Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010) 1188-1192.
  • Srivastava H.M. , Sümer Eker S. , Ali RM., Coefficient bounds for a certain class of analytic and bi-univalent functions. Filomat 29 (2015) 1839-1845.
  • Taha T.S., Topics in Univalent Function Theory, Ph.D. Thesis, University of London, 1981.
There are 14 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Bilal Seker This is me

Veysi Mehmetoglu This is me

Publication Date September 30, 2016
Published in Issue Year 2016 Volume: 4 Issue: 3

Cite

APA Seker, B., & Mehmetoglu, V. (2016). Coefficient bounds for new subclasses of bi-univalent functions. New Trends in Mathematical Sciences, 4(3), 197-203.
AMA Seker B, Mehmetoglu V. Coefficient bounds for new subclasses of bi-univalent functions. New Trends in Mathematical Sciences. September 2016;4(3):197-203.
Chicago Seker, Bilal, and Veysi Mehmetoglu. “Coefficient Bounds for New Subclasses of Bi-Univalent Functions”. New Trends in Mathematical Sciences 4, no. 3 (September 2016): 197-203.
EndNote Seker B, Mehmetoglu V (September 1, 2016) Coefficient bounds for new subclasses of bi-univalent functions. New Trends in Mathematical Sciences 4 3 197–203.
IEEE B. Seker and V. Mehmetoglu, “Coefficient bounds for new subclasses of bi-univalent functions”, New Trends in Mathematical Sciences, vol. 4, no. 3, pp. 197–203, 2016.
ISNAD Seker, Bilal - Mehmetoglu, Veysi. “Coefficient Bounds for New Subclasses of Bi-Univalent Functions”. New Trends in Mathematical Sciences 4/3 (September 2016), 197-203.
JAMA Seker B, Mehmetoglu V. Coefficient bounds for new subclasses of bi-univalent functions. New Trends in Mathematical Sciences. 2016;4:197–203.
MLA Seker, Bilal and Veysi Mehmetoglu. “Coefficient Bounds for New Subclasses of Bi-Univalent Functions”. New Trends in Mathematical Sciences, vol. 4, no. 3, 2016, pp. 197-03.
Vancouver Seker B, Mehmetoglu V. Coefficient bounds for new subclasses of bi-univalent functions. New Trends in Mathematical Sciences. 2016;4(3):197-203.