Research Article
BibTex RIS Cite
Year 2016, Volume: 4 Issue: 3, 223 - 230, 30.09.2016

Abstract

References

  • Kandasamy, W.B.V., and Smarandache, F., Dual Numbers, Zip Publishing, Ohio, 2012.
  • Study, E., Die Geometrie der Dynamen, Leibzig, 1903.
  • Kazaz, M., Ozdemir, A., Ugurlu H.H., Eliptic Motion on Dual Hyperbolic Unit Sphere H ̃_0^2, Mechanism Machine Theory, 1450-1459, 2009.
  • Veldkamp, G. R., On the Use of Dual Numbers, Vectors and Matrices in Instantaneous Spatial Kinematics, Mechanisms and Machine Theory, vol. 11 pp. 141-156, 1976.
  • Taleshian, A., Application of Covariant Derivative in the Dual Space, Int. J. Contemp. Math. Sciences, Vol. 4, no. 17, 821-826, 2009.
  • Ball, R.S., Theory of Screws, Cambridge University Press, Cambridge, 1900.
  • O’Neill, B., Elementary Geometry Differential, New York and London, 1966.
  • Do Carmo, M.P., Differential Geometry Curves and Surfaces, Prentice Hall, Englewood Cliffs, 1976.

Some characterizations of dual vector fields

Year 2016, Volume: 4 Issue: 3, 223 - 230, 30.09.2016

Abstract



The set of the dual vectors which are introduced by ,  called as dual vector field. In our
paper, we introduce the directional derivative of the dual vector fields and
investigate some properties of them. Then we give a numeric example of the dual
vector field aided by E. Study theorem.




References

  • Kandasamy, W.B.V., and Smarandache, F., Dual Numbers, Zip Publishing, Ohio, 2012.
  • Study, E., Die Geometrie der Dynamen, Leibzig, 1903.
  • Kazaz, M., Ozdemir, A., Ugurlu H.H., Eliptic Motion on Dual Hyperbolic Unit Sphere H ̃_0^2, Mechanism Machine Theory, 1450-1459, 2009.
  • Veldkamp, G. R., On the Use of Dual Numbers, Vectors and Matrices in Instantaneous Spatial Kinematics, Mechanisms and Machine Theory, vol. 11 pp. 141-156, 1976.
  • Taleshian, A., Application of Covariant Derivative in the Dual Space, Int. J. Contemp. Math. Sciences, Vol. 4, no. 17, 821-826, 2009.
  • Ball, R.S., Theory of Screws, Cambridge University Press, Cambridge, 1900.
  • O’Neill, B., Elementary Geometry Differential, New York and London, 1966.
  • Do Carmo, M.P., Differential Geometry Curves and Surfaces, Prentice Hall, Englewood Cliffs, 1976.
There are 8 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Hatice Kusak Samanci

Serkan Celik This is me

Publication Date September 30, 2016
Published in Issue Year 2016 Volume: 4 Issue: 3

Cite

APA Kusak Samanci, H., & Celik, S. (2016). Some characterizations of dual vector fields. New Trends in Mathematical Sciences, 4(3), 223-230.
AMA Kusak Samanci H, Celik S. Some characterizations of dual vector fields. New Trends in Mathematical Sciences. September 2016;4(3):223-230.
Chicago Kusak Samanci, Hatice, and Serkan Celik. “Some Characterizations of Dual Vector Fields”. New Trends in Mathematical Sciences 4, no. 3 (September 2016): 223-30.
EndNote Kusak Samanci H, Celik S (September 1, 2016) Some characterizations of dual vector fields. New Trends in Mathematical Sciences 4 3 223–230.
IEEE H. Kusak Samanci and S. Celik, “Some characterizations of dual vector fields”, New Trends in Mathematical Sciences, vol. 4, no. 3, pp. 223–230, 2016.
ISNAD Kusak Samanci, Hatice - Celik, Serkan. “Some Characterizations of Dual Vector Fields”. New Trends in Mathematical Sciences 4/3 (September 2016), 223-230.
JAMA Kusak Samanci H, Celik S. Some characterizations of dual vector fields. New Trends in Mathematical Sciences. 2016;4:223–230.
MLA Kusak Samanci, Hatice and Serkan Celik. “Some Characterizations of Dual Vector Fields”. New Trends in Mathematical Sciences, vol. 4, no. 3, 2016, pp. 223-30.
Vancouver Kusak Samanci H, Celik S. Some characterizations of dual vector fields. New Trends in Mathematical Sciences. 2016;4(3):223-30.