Research Article
BibTex RIS Cite
Year 2016, Volume: 4 Issue: 4, 175 - 187, 31.12.2016

Abstract

References

  • J. Stefan, Uber die theorie der eisbildung inbesondee uber die eisbindung im polarmeere, Ann. Phys. U. Chem. 42 (1891) 269-286.
  • J. Crank, Free and Moving Boundary Problems, Clarendon Press, Oxford, 1984.
  • W.D. Murray, and F. Landis, Numerical and Machine Solutions of Transient Heat Conduction Involving Melting or Freezing, J. Heat Transfer 81 106-112 (1959).
  • S. Kutluay, A.R. Bahadir, A. Ozdes, The numerical solution of one-phase classical Stefan problem, J. Comp. Appl. Math. 81 (1997) 35-44.
  • N. S. Asaithambi, A Variable Time-Step Galerkin Method for the One- Dimensional Stefan Problem, Applied Mathematics and Computation 81 (1997) 189-200.
  • T.R.Goodman, The Heat-Balance Integral and its Application to Problems Involving a Change of Phase, Trans. ASME 80 (1959) 335-342.
  • H.G. Landau, Heat conduction in a melting solid, Quart. J. Appl. Math. 8 (1950) 81-94.
  • F.L. Chernousko,, Solution of non-linear Problems in Medium with Changes, Int. Chem. Engng. 10 (1970) 42-48.
  • R.C. Dix and J. Cizek, The isotherm migration method for transient heat conduction analysis, in: U. Grigull and E. Hahne, Eds., Heat Transfer 1, Proc. 4th Znternat. Heat Transfer Conf, Paris (Elsevier, Amsterdam, 1970) Cul.1.
  • A. Esen and S.Kutluay, An isotherm migration formulation for one-phase Stefan problem with a time dependent Neumann condition, Applied Mathematics and Computation 150 (2004) 59-67.
  • A. Esen, S. Kutluay, A numerical solution of the Stefan problem with a Neumann-type boundary condition by enthalpy method, Applied Mathematics and Computation 148 (2004) 321-329.
  • J. Caldwell, S. Savovic, Y.Y. Kwan, Nodal Integral and Finite Difference Solution of One-Dimensional Stefan Problem, J. Heat Mass Trans. 125 (2003) 523-527.
  • A.H.A. Ali, G.A. Gardner, L.R.T. Gardner, A collocation solution for Burgers equation using cubic B-spline finite elements, Comput. Meth. Appl. Mech. Eng. 100 (1992) 325-337.
  • R.M. Furzeland, A comparative study of numerical methods for moving boundary problems, J. Inst. Maths. Appl. 26 (1980) 411-429.

Numerical solutions for a Stefan problem

Year 2016, Volume: 4 Issue: 4, 175 - 187, 31.12.2016

Abstract

The initial version of a Stefan problem is the melting
of a semi-infinite sheet of ice. This problem is described by a parabolic
partial differential equation along with two boundary conditions on the moving
boundary which are used to determine the boundary itself and complete the
solution of the differential equation. In this paper firstly, we use variable
space grid method, boundary immobilisation method and isotherm migration method
to get rid of the trouble of the Stefan problem. Then, collocation finite
element method based on cubic B-spline bases functions is applied to model
problem. The numerical schemes of finite element methods provide a good
numerical approximation for the model problem. The numerical results show that
the present results are in good agreement with the exact ones.

References

  • J. Stefan, Uber die theorie der eisbildung inbesondee uber die eisbindung im polarmeere, Ann. Phys. U. Chem. 42 (1891) 269-286.
  • J. Crank, Free and Moving Boundary Problems, Clarendon Press, Oxford, 1984.
  • W.D. Murray, and F. Landis, Numerical and Machine Solutions of Transient Heat Conduction Involving Melting or Freezing, J. Heat Transfer 81 106-112 (1959).
  • S. Kutluay, A.R. Bahadir, A. Ozdes, The numerical solution of one-phase classical Stefan problem, J. Comp. Appl. Math. 81 (1997) 35-44.
  • N. S. Asaithambi, A Variable Time-Step Galerkin Method for the One- Dimensional Stefan Problem, Applied Mathematics and Computation 81 (1997) 189-200.
  • T.R.Goodman, The Heat-Balance Integral and its Application to Problems Involving a Change of Phase, Trans. ASME 80 (1959) 335-342.
  • H.G. Landau, Heat conduction in a melting solid, Quart. J. Appl. Math. 8 (1950) 81-94.
  • F.L. Chernousko,, Solution of non-linear Problems in Medium with Changes, Int. Chem. Engng. 10 (1970) 42-48.
  • R.C. Dix and J. Cizek, The isotherm migration method for transient heat conduction analysis, in: U. Grigull and E. Hahne, Eds., Heat Transfer 1, Proc. 4th Znternat. Heat Transfer Conf, Paris (Elsevier, Amsterdam, 1970) Cul.1.
  • A. Esen and S.Kutluay, An isotherm migration formulation for one-phase Stefan problem with a time dependent Neumann condition, Applied Mathematics and Computation 150 (2004) 59-67.
  • A. Esen, S. Kutluay, A numerical solution of the Stefan problem with a Neumann-type boundary condition by enthalpy method, Applied Mathematics and Computation 148 (2004) 321-329.
  • J. Caldwell, S. Savovic, Y.Y. Kwan, Nodal Integral and Finite Difference Solution of One-Dimensional Stefan Problem, J. Heat Mass Trans. 125 (2003) 523-527.
  • A.H.A. Ali, G.A. Gardner, L.R.T. Gardner, A collocation solution for Burgers equation using cubic B-spline finite elements, Comput. Meth. Appl. Mech. Eng. 100 (1992) 325-337.
  • R.M. Furzeland, A comparative study of numerical methods for moving boundary problems, J. Inst. Maths. Appl. 26 (1980) 411-429.
There are 14 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Hatice Karabenli This is me

Alaattin Esen This is me

E.nesligul Aksan This is me

Publication Date December 31, 2016
Published in Issue Year 2016 Volume: 4 Issue: 4

Cite

APA Karabenli, H., Esen, A., & Aksan, E. (2016). Numerical solutions for a Stefan problem. New Trends in Mathematical Sciences, 4(4), 175-187.
AMA Karabenli H, Esen A, Aksan E. Numerical solutions for a Stefan problem. New Trends in Mathematical Sciences. December 2016;4(4):175-187.
Chicago Karabenli, Hatice, Alaattin Esen, and E.nesligul Aksan. “Numerical Solutions for a Stefan Problem”. New Trends in Mathematical Sciences 4, no. 4 (December 2016): 175-87.
EndNote Karabenli H, Esen A, Aksan E (December 1, 2016) Numerical solutions for a Stefan problem. New Trends in Mathematical Sciences 4 4 175–187.
IEEE H. Karabenli, A. Esen, and E. Aksan, “Numerical solutions for a Stefan problem”, New Trends in Mathematical Sciences, vol. 4, no. 4, pp. 175–187, 2016.
ISNAD Karabenli, Hatice et al. “Numerical Solutions for a Stefan Problem”. New Trends in Mathematical Sciences 4/4 (December 2016), 175-187.
JAMA Karabenli H, Esen A, Aksan E. Numerical solutions for a Stefan problem. New Trends in Mathematical Sciences. 2016;4:175–187.
MLA Karabenli, Hatice et al. “Numerical Solutions for a Stefan Problem”. New Trends in Mathematical Sciences, vol. 4, no. 4, 2016, pp. 175-87.
Vancouver Karabenli H, Esen A, Aksan E. Numerical solutions for a Stefan problem. New Trends in Mathematical Sciences. 2016;4(4):175-87.