Birkhoff G. Lattice Theory. American Mathematical Society Colloquium Publishers, Providence, RI, 1967.
Blyth T. S. Lattices and Ordered Algebric Structures. Berlin: Springer,2005.
Ertugrul U., Kesicioğlu M. N., F. Karaçal, Ordering based on uninorms, Information Sciences, 330(2016) 315-327.
Ertugrul U., Karaçal F., Mesiar R., Modified ordinal sums of triangular norms and triangular conorms on bounded lattices, International Journal of Intelligent Systems, 30 (2015) 807-817.
Gratzer G. General Lattice Theory. Berlin: Akademie, 1978.
Höhle U. Commutative, Residuated l- monoids, in: U. Ho ̈hle, E.P. Klement (Eds.), Non-Classical Logics and Their Applications to Fuzzy Subsets: A Handbook on the Math. Foundations of Fuzzy Set Theory. Dordrecht: Kluwer, 1995.
Karacal F., Ertugrul U., Mesiar R., Characterization of uninorms on bounded lattices, Fuzzy Sets Systems (2016), http://dx.doi.org/10.1016/j.fss.2016.05.014
Karacal F., Khadjiev Dj. ∨_- distributive and infinitely ∨_-distributive t-norms on complete lattice. Fuzzy Sets and Systems 2005; 151: 341-352.
Kesicioglu M. N., Karaçal F. Mesiar R. Order-equivalent triangular norms. Fuzzy Sets and Systems 2015; 268: 59-71.
Klement E. P., Mesiar R. Pap E. Integration with respect to decomposable measures, based on a conditionally distributive semiring on the unit interval. Internat. J. Uncertain, Fuzziness Knowledge-Based Systems 2000; 8: 701-717.
Klement E. P., Mesiar R. Pap E. Triangular Norms. Dordrecht: Kluwer Academic Publishers, 2000.
Klement E. P., Weber S. An integral representation for decomposable measures of measurable functions. Aequationes Math. 1994; 47: 255-262.
Kolesárová A. On the integral representation of possibility measures of fuzzy events. J. Fuzzy Math. 1997; 5: 759-766.
Mitsch H. A natural partial order for semigroups. Proceedings of the American Mathematical Society 1986; 97: 384-388.
Zhang D. Triangular Norms on Partially Ordered Sets. Fuzzy Sets and Systems 2005; 153: 195-209.
Some properties of K_⪯ set
Year 2016,
Volume: 4 Issue: 4, 239 - 244, 31.12.2016
Birkhoff G. Lattice Theory. American Mathematical Society Colloquium Publishers, Providence, RI, 1967.
Blyth T. S. Lattices and Ordered Algebric Structures. Berlin: Springer,2005.
Ertugrul U., Kesicioğlu M. N., F. Karaçal, Ordering based on uninorms, Information Sciences, 330(2016) 315-327.
Ertugrul U., Karaçal F., Mesiar R., Modified ordinal sums of triangular norms and triangular conorms on bounded lattices, International Journal of Intelligent Systems, 30 (2015) 807-817.
Gratzer G. General Lattice Theory. Berlin: Akademie, 1978.
Höhle U. Commutative, Residuated l- monoids, in: U. Ho ̈hle, E.P. Klement (Eds.), Non-Classical Logics and Their Applications to Fuzzy Subsets: A Handbook on the Math. Foundations of Fuzzy Set Theory. Dordrecht: Kluwer, 1995.
Karacal F., Ertugrul U., Mesiar R., Characterization of uninorms on bounded lattices, Fuzzy Sets Systems (2016), http://dx.doi.org/10.1016/j.fss.2016.05.014
Karacal F., Khadjiev Dj. ∨_- distributive and infinitely ∨_-distributive t-norms on complete lattice. Fuzzy Sets and Systems 2005; 151: 341-352.
Kesicioglu M. N., Karaçal F. Mesiar R. Order-equivalent triangular norms. Fuzzy Sets and Systems 2015; 268: 59-71.
Klement E. P., Mesiar R. Pap E. Integration with respect to decomposable measures, based on a conditionally distributive semiring on the unit interval. Internat. J. Uncertain, Fuzziness Knowledge-Based Systems 2000; 8: 701-717.
Klement E. P., Mesiar R. Pap E. Triangular Norms. Dordrecht: Kluwer Academic Publishers, 2000.
Klement E. P., Weber S. An integral representation for decomposable measures of measurable functions. Aequationes Math. 1994; 47: 255-262.
Kolesárová A. On the integral representation of possibility measures of fuzzy events. J. Fuzzy Math. 1997; 5: 759-766.
Mitsch H. A natural partial order for semigroups. Proceedings of the American Mathematical Society 1986; 97: 384-388.
Zhang D. Triangular Norms on Partially Ordered Sets. Fuzzy Sets and Systems 2005; 153: 195-209.
Karacal, F., Ince, M. A., & Ertugrul, U. (2016). Some properties of K_⪯ set. New Trends in Mathematical Sciences, 4(4), 239-244.
AMA
Karacal F, Ince MA, Ertugrul U. Some properties of K_⪯ set. New Trends in Mathematical Sciences. December 2016;4(4):239-244.
Chicago
Karacal, Funda, Mehmet Akif Ince, and Umit Ertugrul. “Some Properties of K_⪯ Set”. New Trends in Mathematical Sciences 4, no. 4 (December 2016): 239-44.
EndNote
Karacal F, Ince MA, Ertugrul U (December 1, 2016) Some properties of K_⪯ set. New Trends in Mathematical Sciences 4 4 239–244.
IEEE
F. Karacal, M. A. Ince, and U. Ertugrul, “Some properties of K_⪯ set”, New Trends in Mathematical Sciences, vol. 4, no. 4, pp. 239–244, 2016.
ISNAD
Karacal, Funda et al. “Some Properties of K_⪯ Set”. New Trends in Mathematical Sciences 4/4 (December 2016), 239-244.
JAMA
Karacal F, Ince MA, Ertugrul U. Some properties of K_⪯ set. New Trends in Mathematical Sciences. 2016;4:239–244.
MLA
Karacal, Funda et al. “Some Properties of K_⪯ Set”. New Trends in Mathematical Sciences, vol. 4, no. 4, 2016, pp. 239-44.
Vancouver
Karacal F, Ince MA, Ertugrul U. Some properties of K_⪯ set. New Trends in Mathematical Sciences. 2016;4(4):239-44.