Research Article
BibTex RIS Cite
Year 2016, Volume: 4 Issue: 4, 239 - 244, 31.12.2016

Abstract

References

  • Birkhoff G. Lattice Theory. American Mathematical Society Colloquium Publishers, Providence, RI, 1967.
  • Blyth T. S. Lattices and Ordered Algebric Structures. Berlin: Springer,2005.
  • Ertugrul U., Kesicioğlu M. N., F. Karaçal, Ordering based on uninorms, Information Sciences, 330(2016) 315-327.
  • Ertugrul U., Karaçal F., Mesiar R., Modified ordinal sums of triangular norms and triangular conorms on bounded lattices, International Journal of Intelligent Systems, 30 (2015) 807-817.
  • Gratzer G. General Lattice Theory. Berlin: Akademie, 1978.
  • Höhle U. Commutative, Residuated l- monoids, in: U. Ho ̈hle, E.P. Klement (Eds.), Non-Classical Logics and Their Applications to Fuzzy Subsets: A Handbook on the Math. Foundations of Fuzzy Set Theory. Dordrecht: Kluwer, 1995.
  • Karacal F., Ertugrul U., Mesiar R., Characterization of uninorms on bounded lattices, Fuzzy Sets Systems (2016), http://dx.doi.org/10.1016/j.fss.2016.05.014
  • Karacal F., Khadjiev Dj. ∨_- distributive and infinitely ∨_-distributive t-norms on complete lattice. Fuzzy Sets and Systems 2005; 151: 341-352.
  • Kesicioglu M. N., Karaçal F. Mesiar R. Order-equivalent triangular norms. Fuzzy Sets and Systems 2015; 268: 59-71.
  • Klement E. P., Mesiar R. Pap E. Integration with respect to decomposable measures, based on a conditionally distributive semiring on the unit interval. Internat. J. Uncertain, Fuzziness Knowledge-Based Systems 2000; 8: 701-717.
  • Klement E. P., Mesiar R. Pap E. Triangular Norms. Dordrecht: Kluwer Academic Publishers, 2000.
  • Klement E. P., Weber S. An integral representation for decomposable measures of measurable functions. Aequationes Math. 1994; 47: 255-262.
  • Kolesárová A. On the integral representation of possibility measures of fuzzy events. J. Fuzzy Math. 1997; 5: 759-766.
  • Mitsch H. A natural partial order for semigroups. Proceedings of the American Mathematical Society 1986; 97: 384-388.
  • Zhang D. Triangular Norms on Partially Ordered Sets. Fuzzy Sets and Systems 2005; 153: 195-209.

Some properties of K_⪯ set

Year 2016, Volume: 4 Issue: 4, 239 - 244, 31.12.2016

Abstract


References

  • Birkhoff G. Lattice Theory. American Mathematical Society Colloquium Publishers, Providence, RI, 1967.
  • Blyth T. S. Lattices and Ordered Algebric Structures. Berlin: Springer,2005.
  • Ertugrul U., Kesicioğlu M. N., F. Karaçal, Ordering based on uninorms, Information Sciences, 330(2016) 315-327.
  • Ertugrul U., Karaçal F., Mesiar R., Modified ordinal sums of triangular norms and triangular conorms on bounded lattices, International Journal of Intelligent Systems, 30 (2015) 807-817.
  • Gratzer G. General Lattice Theory. Berlin: Akademie, 1978.
  • Höhle U. Commutative, Residuated l- monoids, in: U. Ho ̈hle, E.P. Klement (Eds.), Non-Classical Logics and Their Applications to Fuzzy Subsets: A Handbook on the Math. Foundations of Fuzzy Set Theory. Dordrecht: Kluwer, 1995.
  • Karacal F., Ertugrul U., Mesiar R., Characterization of uninorms on bounded lattices, Fuzzy Sets Systems (2016), http://dx.doi.org/10.1016/j.fss.2016.05.014
  • Karacal F., Khadjiev Dj. ∨_- distributive and infinitely ∨_-distributive t-norms on complete lattice. Fuzzy Sets and Systems 2005; 151: 341-352.
  • Kesicioglu M. N., Karaçal F. Mesiar R. Order-equivalent triangular norms. Fuzzy Sets and Systems 2015; 268: 59-71.
  • Klement E. P., Mesiar R. Pap E. Integration with respect to decomposable measures, based on a conditionally distributive semiring on the unit interval. Internat. J. Uncertain, Fuzziness Knowledge-Based Systems 2000; 8: 701-717.
  • Klement E. P., Mesiar R. Pap E. Triangular Norms. Dordrecht: Kluwer Academic Publishers, 2000.
  • Klement E. P., Weber S. An integral representation for decomposable measures of measurable functions. Aequationes Math. 1994; 47: 255-262.
  • Kolesárová A. On the integral representation of possibility measures of fuzzy events. J. Fuzzy Math. 1997; 5: 759-766.
  • Mitsch H. A natural partial order for semigroups. Proceedings of the American Mathematical Society 1986; 97: 384-388.
  • Zhang D. Triangular Norms on Partially Ordered Sets. Fuzzy Sets and Systems 2005; 153: 195-209.
There are 15 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Funda Karacal This is me

Mehmet Akif Ince This is me

Umit Ertugrul This is me

Publication Date December 31, 2016
Published in Issue Year 2016 Volume: 4 Issue: 4

Cite

APA Karacal, F., Ince, M. A., & Ertugrul, U. (2016). Some properties of K_⪯ set. New Trends in Mathematical Sciences, 4(4), 239-244.
AMA Karacal F, Ince MA, Ertugrul U. Some properties of K_⪯ set. New Trends in Mathematical Sciences. December 2016;4(4):239-244.
Chicago Karacal, Funda, Mehmet Akif Ince, and Umit Ertugrul. “Some Properties of K_⪯ Set”. New Trends in Mathematical Sciences 4, no. 4 (December 2016): 239-44.
EndNote Karacal F, Ince MA, Ertugrul U (December 1, 2016) Some properties of K_⪯ set. New Trends in Mathematical Sciences 4 4 239–244.
IEEE F. Karacal, M. A. Ince, and U. Ertugrul, “Some properties of K_⪯ set”, New Trends in Mathematical Sciences, vol. 4, no. 4, pp. 239–244, 2016.
ISNAD Karacal, Funda et al. “Some Properties of K_⪯ Set”. New Trends in Mathematical Sciences 4/4 (December 2016), 239-244.
JAMA Karacal F, Ince MA, Ertugrul U. Some properties of K_⪯ set. New Trends in Mathematical Sciences. 2016;4:239–244.
MLA Karacal, Funda et al. “Some Properties of K_⪯ Set”. New Trends in Mathematical Sciences, vol. 4, no. 4, 2016, pp. 239-44.
Vancouver Karacal F, Ince MA, Ertugrul U. Some properties of K_⪯ set. New Trends in Mathematical Sciences. 2016;4(4):239-44.