In this study, some curvature conditions are given for 3-dimensional f-Kenmotsu manifolds with the semi-symmetric non-metric connection. It is showed that this manifold is not always ξ-projective flat. Moreover, it is informed that if 3-dimensional f-Kenmotsu manifold with the semi-symmetric non-metric connection is Ricci semi-symmetric and regular, then the manifold is an Einstein manifold. Finally, it is proved that 3-dimensional f-Kenmotsu manifold with the semi-symmetric non-metric connection is also an η-Einstein manifold and the Ricci soliton defined on this manifold is named expanding or shrinking with respect to values of f and λ constant.
Primary Language | English |
---|---|
Journal Section | Articles |
Authors | |
Publication Date | December 31, 2016 |
Published in Issue | Year 2016 Volume: 4 Issue: 4 |