Research Article
BibTex RIS Cite
Year 2016, Volume: 4 Issue: 4, 276 - 284, 31.12.2016

Abstract

References

  • Agashe, S. and Chafle, R., 1992, A semi-symmetric non-metric connection on a Riemannian manifold, Indian Journal Pure Applications, 23, 6, 399-409.
  • Bagewadi, C. S. and Ingalahalli, G., 2012, Ricci solitons in α-Sasakain manifolds, ISRN Geometry, 13 p.
  • Bejan, C.L. and Crasmareanu, M., 2011, Ricci solitons in manifolds with quasi-constant curvature, Publicationes Mathematicae, Debrecen, 78, 1, 235-243.
  • Călin, C. and Crasmareanu, M., 2010, From the Eisenhart problem to Ricci solitons in f-Kenmotsu manifolds, Bulletin of the Malaysian Mathematical Sciences Society, 33, 3, 361–368.
  • Crasmareanu, M., 2012, Parallel tensors and Ricci solitons in N(k)-Quasi Einstein manifolds, Indian Journal of Pure and Applied Mathematics, 43, 4, 359–369.
  • De, U. C. and Shaikh, A.A., 2007, Differential geometry of manifolds, Alpha Science International, 298 p.
  • Kenmotsu, K., 1972, A class of almost contact Riemannian manifolds, The Tohoku Mathematical Journal, 24, 93–103.
  • Liang, K. C., 1972, A nonoscillation theorem for the superlinear case of second order differential equations, SIAM Journal on Applied Mathematics, 23, 4, 456-459.
  • Mishra R. S., 1984, Structures on differentiable manifold and their applications, Chandrama Prakasana.
  • Nagaraja, H. G. and Premalatha, C. R., 2012, Ricci solitons in Kenmotsu manifolds, Journal of Mathematical Analysis, 3, 2, 18–24.
  • Olszak, Z., Rosca, R., 1991, Normal locally conformal almost cosymplectic manifolds, Publicationes Mathematicae Debrecen, 39, 3, 315-323.
  • Öztürk, H., Aktan, N. and Murathan, C., 2010, On α-Kenmotsu manifolds satisfying some certain conditions, Applied Sciences, 12, 115-126.
  • Prvanovic, M., 1975, On pseudo metric semi-symmetric connections, Publication De L Institut Mathematic Nouvelle Series, 18, 32, 157–164.
  • Sengupta, J., De, U. C. and Binh, T. Q., 2000, On a type of semi-symmetric non-metric connection on a Riemannian manifold, Indian Journal of Pure and Applied Mathematics, 31, 1659-1670.
  • Sharma, R. and B. B. Sinha, 1983, On para-A-Einstein manifolds, Publications De L’institut Mathematique, 34, 48, 211-215.
  • Shukla, S. S. and Singh, D. D., 2010, On (ξ)-Trans-Sasakian manifolds, International Journal of Mathematical Analysis, 4, 49, 2401 - 2414.
  • Tripathi, M. M., 2008, Ricci solitons in contact metric manifolds, http://arxiv. org / abs / 0801.4222, 9 p.
  • Yıldız, A., De, U. C. and Turan, M., 2013, On 3-dimensional f-Kenmotsu manifolds and Ricci solitons, Ukrainian Mathematical Journal, 65, 5, 620-628.
  • Yıldız, A. and Çetinkaya, A., 2013, Kenmotsu manifolds with the semi-symmetric non-metric connection, preprint.

Ricci Solitons in f-Kenmotsu Manifolds with the semi-symmetric non-metric connection

Year 2016, Volume: 4 Issue: 4, 276 - 284, 31.12.2016

Abstract

In this study, some curvature conditions are given for 3-dimensional f-Kenmotsu manifolds with the semi-symmetric non-metric connection. It is showed that this manifold is not always ξ-projective flat. Moreover, it is informed that if 3-dimensional f-Kenmotsu manifold with the semi-symmetric non-metric connection is Ricci semi-symmetric and regular, then the manifold is an Einstein manifold. Finally, it is proved that 3-dimensional f-Kenmotsu manifold with the semi-symmetric non-metric connection is also an η-Einstein manifold and the Ricci soliton defined on this manifold is named expanding or shrinking with respect to values of f and λ constant.

References

  • Agashe, S. and Chafle, R., 1992, A semi-symmetric non-metric connection on a Riemannian manifold, Indian Journal Pure Applications, 23, 6, 399-409.
  • Bagewadi, C. S. and Ingalahalli, G., 2012, Ricci solitons in α-Sasakain manifolds, ISRN Geometry, 13 p.
  • Bejan, C.L. and Crasmareanu, M., 2011, Ricci solitons in manifolds with quasi-constant curvature, Publicationes Mathematicae, Debrecen, 78, 1, 235-243.
  • Călin, C. and Crasmareanu, M., 2010, From the Eisenhart problem to Ricci solitons in f-Kenmotsu manifolds, Bulletin of the Malaysian Mathematical Sciences Society, 33, 3, 361–368.
  • Crasmareanu, M., 2012, Parallel tensors and Ricci solitons in N(k)-Quasi Einstein manifolds, Indian Journal of Pure and Applied Mathematics, 43, 4, 359–369.
  • De, U. C. and Shaikh, A.A., 2007, Differential geometry of manifolds, Alpha Science International, 298 p.
  • Kenmotsu, K., 1972, A class of almost contact Riemannian manifolds, The Tohoku Mathematical Journal, 24, 93–103.
  • Liang, K. C., 1972, A nonoscillation theorem for the superlinear case of second order differential equations, SIAM Journal on Applied Mathematics, 23, 4, 456-459.
  • Mishra R. S., 1984, Structures on differentiable manifold and their applications, Chandrama Prakasana.
  • Nagaraja, H. G. and Premalatha, C. R., 2012, Ricci solitons in Kenmotsu manifolds, Journal of Mathematical Analysis, 3, 2, 18–24.
  • Olszak, Z., Rosca, R., 1991, Normal locally conformal almost cosymplectic manifolds, Publicationes Mathematicae Debrecen, 39, 3, 315-323.
  • Öztürk, H., Aktan, N. and Murathan, C., 2010, On α-Kenmotsu manifolds satisfying some certain conditions, Applied Sciences, 12, 115-126.
  • Prvanovic, M., 1975, On pseudo metric semi-symmetric connections, Publication De L Institut Mathematic Nouvelle Series, 18, 32, 157–164.
  • Sengupta, J., De, U. C. and Binh, T. Q., 2000, On a type of semi-symmetric non-metric connection on a Riemannian manifold, Indian Journal of Pure and Applied Mathematics, 31, 1659-1670.
  • Sharma, R. and B. B. Sinha, 1983, On para-A-Einstein manifolds, Publications De L’institut Mathematique, 34, 48, 211-215.
  • Shukla, S. S. and Singh, D. D., 2010, On (ξ)-Trans-Sasakian manifolds, International Journal of Mathematical Analysis, 4, 49, 2401 - 2414.
  • Tripathi, M. M., 2008, Ricci solitons in contact metric manifolds, http://arxiv. org / abs / 0801.4222, 9 p.
  • Yıldız, A., De, U. C. and Turan, M., 2013, On 3-dimensional f-Kenmotsu manifolds and Ricci solitons, Ukrainian Mathematical Journal, 65, 5, 620-628.
  • Yıldız, A. and Çetinkaya, A., 2013, Kenmotsu manifolds with the semi-symmetric non-metric connection, preprint.
There are 19 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Tolga Demirli This is me

Cumali Ekici

Ali Gorgulu This is me

Publication Date December 31, 2016
Published in Issue Year 2016 Volume: 4 Issue: 4

Cite

APA Demirli, T., Ekici, C., & Gorgulu, A. (2016). Ricci Solitons in f-Kenmotsu Manifolds with the semi-symmetric non-metric connection. New Trends in Mathematical Sciences, 4(4), 276-284.
AMA Demirli T, Ekici C, Gorgulu A. Ricci Solitons in f-Kenmotsu Manifolds with the semi-symmetric non-metric connection. New Trends in Mathematical Sciences. December 2016;4(4):276-284.
Chicago Demirli, Tolga, Cumali Ekici, and Ali Gorgulu. “Ricci Solitons in F-Kenmotsu Manifolds With the Semi-Symmetric Non-Metric Connection”. New Trends in Mathematical Sciences 4, no. 4 (December 2016): 276-84.
EndNote Demirli T, Ekici C, Gorgulu A (December 1, 2016) Ricci Solitons in f-Kenmotsu Manifolds with the semi-symmetric non-metric connection. New Trends in Mathematical Sciences 4 4 276–284.
IEEE T. Demirli, C. Ekici, and A. Gorgulu, “Ricci Solitons in f-Kenmotsu Manifolds with the semi-symmetric non-metric connection”, New Trends in Mathematical Sciences, vol. 4, no. 4, pp. 276–284, 2016.
ISNAD Demirli, Tolga et al. “Ricci Solitons in F-Kenmotsu Manifolds With the Semi-Symmetric Non-Metric Connection”. New Trends in Mathematical Sciences 4/4 (December 2016), 276-284.
JAMA Demirli T, Ekici C, Gorgulu A. Ricci Solitons in f-Kenmotsu Manifolds with the semi-symmetric non-metric connection. New Trends in Mathematical Sciences. 2016;4:276–284.
MLA Demirli, Tolga et al. “Ricci Solitons in F-Kenmotsu Manifolds With the Semi-Symmetric Non-Metric Connection”. New Trends in Mathematical Sciences, vol. 4, no. 4, 2016, pp. 276-84.
Vancouver Demirli T, Ekici C, Gorgulu A. Ricci Solitons in f-Kenmotsu Manifolds with the semi-symmetric non-metric connection. New Trends in Mathematical Sciences. 2016;4(4):276-84.