Year 2016,
Volume: 4 Issue: 4, 322 - 328, 31.12.2016
Dalip Singh Jamwal
Rohini Jamwal
Shivani Sharma
References
- V. Bala'z ̆, J. C ̆erven'ansky', P. Kostyrko, T. S ̆ala't, I-convergence and I-continuity of real functions, Faculty of Natural Sciences, Constantine the Philosoper University, Nitra, Acta Mathematical 5, 43-50, 2002.
- N. Bourbaki, General Topology, Part (I) (transl.), Addison- Wesley, Reading (1966).
- K. Demirci, I-limit superior and limit inferior, Math. Commun. 6 (2001), 165-172.
- H. Fast, sur la convergence statistique, colloq. Math. 2 (1951), 241-244.
- H. Halberstem, K. F. Roth, Sequences, Springer, New York, 1993.
- P. Kostyrko, T.S ̆ala't, W. Wilczynski, I-convergence, Real Analysis, Exch. 26 (2) (2000/2001), 669-685.
- P. Kostyrko, M. Mac ̆aj, T.S ̆ala't, M. Sleziak, I-convergence and extremal I-limit points, Math. Slovaca, 55 (4) (2005), 443-464.
- B. K. Lahiri, P. Das, Further results on I-limit superior and I-limit inferior, Math. Commun., 8 (2003), 151-156.
- B. K. Lahiri, P. Das, I and I^*-convergence in topological spaces, Math. Bohemica, 130 (2) (2005), 153-160.
- B. K. Lahiri, P. Das, I and I^*-convergence of nets, Real Analysis Exchange, 33 (2) (2007/2008), 431-442.
- M. Mac ̆aj, T.S ̆ala't, Statistical convergence of subsequences of a given sequence, Math. Bohemica, 126 (2001), 191-208.
- M. Mursaleen and A. Alotaibi, On I–convergence in random 2–normed spaces, Math. Slovaca, 61(6) (2011) 933–940.
- M. Mursaleen and S. A. Mohiuddine, On ideal convergence of double sequences in probabilistic normed spaces, Math. Reports, 12(62)(4) (2010) 359-371.
- M. Mursaleen and S. A. Mohiuddine, On ideal convergence in probabilistic normed spaces, Math. Slovaca, 62(1) (2012) 49-62.
- M. Mursaleen, S. A. Mohiuddine and O. H. H. Edely, On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces, Comput. Math. Appl., 59 (2010) 603-611.
- I. Niven, H. S. Zuckerman, An introduction to the theory of numbers, 4th Ed., John Wiley, New York, 1980.
- T.S ̆ala't, On statistically convergent sequences of real numbers, Mathematical Slovaca, 30 (1980), No. 2, 139-150.
- T.S ̆ala't, B. C. Tripathy, M. Ziman, On I-convergence field, Italian J. of Pure Appl. Math. 17 (2005), 45-54.
- A.Sahiner, M. Gürdal, S. Saltan and H. Gunawan, Ideal convergence in 2-normed spaces, Taiwanese J. Math., 11(5) (2007), 1477-1484.
- I. J. Schoenberg, The integrability of certain function and related summability methods, Am. Math. Mon. 66 (1959), 361-375.
- S. Willard, General Topology, Addison-Wesley Pub. Co. 1970.
Year 2016,
Volume: 4 Issue: 4, 322 - 328, 31.12.2016
Dalip Singh Jamwal
Rohini Jamwal
Shivani Sharma
Abstract
In this paper, we have introduced the idea of I-convergence of filters and studied its various properties. We have proved the necessary and sufficient condition for a filter to be I-convergent.
References
- V. Bala'z ̆, J. C ̆erven'ansky', P. Kostyrko, T. S ̆ala't, I-convergence and I-continuity of real functions, Faculty of Natural Sciences, Constantine the Philosoper University, Nitra, Acta Mathematical 5, 43-50, 2002.
- N. Bourbaki, General Topology, Part (I) (transl.), Addison- Wesley, Reading (1966).
- K. Demirci, I-limit superior and limit inferior, Math. Commun. 6 (2001), 165-172.
- H. Fast, sur la convergence statistique, colloq. Math. 2 (1951), 241-244.
- H. Halberstem, K. F. Roth, Sequences, Springer, New York, 1993.
- P. Kostyrko, T.S ̆ala't, W. Wilczynski, I-convergence, Real Analysis, Exch. 26 (2) (2000/2001), 669-685.
- P. Kostyrko, M. Mac ̆aj, T.S ̆ala't, M. Sleziak, I-convergence and extremal I-limit points, Math. Slovaca, 55 (4) (2005), 443-464.
- B. K. Lahiri, P. Das, Further results on I-limit superior and I-limit inferior, Math. Commun., 8 (2003), 151-156.
- B. K. Lahiri, P. Das, I and I^*-convergence in topological spaces, Math. Bohemica, 130 (2) (2005), 153-160.
- B. K. Lahiri, P. Das, I and I^*-convergence of nets, Real Analysis Exchange, 33 (2) (2007/2008), 431-442.
- M. Mac ̆aj, T.S ̆ala't, Statistical convergence of subsequences of a given sequence, Math. Bohemica, 126 (2001), 191-208.
- M. Mursaleen and A. Alotaibi, On I–convergence in random 2–normed spaces, Math. Slovaca, 61(6) (2011) 933–940.
- M. Mursaleen and S. A. Mohiuddine, On ideal convergence of double sequences in probabilistic normed spaces, Math. Reports, 12(62)(4) (2010) 359-371.
- M. Mursaleen and S. A. Mohiuddine, On ideal convergence in probabilistic normed spaces, Math. Slovaca, 62(1) (2012) 49-62.
- M. Mursaleen, S. A. Mohiuddine and O. H. H. Edely, On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces, Comput. Math. Appl., 59 (2010) 603-611.
- I. Niven, H. S. Zuckerman, An introduction to the theory of numbers, 4th Ed., John Wiley, New York, 1980.
- T.S ̆ala't, On statistically convergent sequences of real numbers, Mathematical Slovaca, 30 (1980), No. 2, 139-150.
- T.S ̆ala't, B. C. Tripathy, M. Ziman, On I-convergence field, Italian J. of Pure Appl. Math. 17 (2005), 45-54.
- A.Sahiner, M. Gürdal, S. Saltan and H. Gunawan, Ideal convergence in 2-normed spaces, Taiwanese J. Math., 11(5) (2007), 1477-1484.
- I. J. Schoenberg, The integrability of certain function and related summability methods, Am. Math. Mon. 66 (1959), 361-375.
- S. Willard, General Topology, Addison-Wesley Pub. Co. 1970.