Research Article
BibTex RIS Cite
Year 2016, Volume: 4 Issue: 4, 329 - 336, 31.12.2016

Abstract

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976.
  • R. Díaz and E. Pariguan, On hypergeometric functions and Pachhammer k-symbol, Divulgaciones Matemtícas, 15(2)(2007), 179-192.
  • W. Gautschi, Some elementary inequalities relating to the Gamma and incomplete Gamma function, Journal of Mathematics and Physics, 38(1)(1959), 77-81.
  • A. Laforgia and P. Natalini, On Some Inequalities for the Gamma Function, Advances in Dynamical Systems and Applications, 8(2)(2013), 261-267.
  • J. Lew, J. Frauenthal, N. Keyfitz, On the Average Distances in a Circular Disc, SIAM Rev., 20(3)(1978), 584-592.
  • K. Nantomah and E. Prempeh, Certain Inequalities Involving the q-Deformed Gamma Function , Probl. Anal. Issues Anal., 4(22)(1)(2015), 57-65.
  • K. Nantomah and E. Prempeh, Inequalities for the (q,k)-Deformed Gamma Function emanating from Certain Problems of Traffic Flow, Honam Mathematical Journal, 38(1)(2016), 9-15.
  • K. Nantomah. E. Prempeh and S. B. Twum, On a (p,k)-analogue of the Gamma function and some associated Inequalities, Moroccan Journal of Pure and Applied Analysis, 2(2)(2016), 79-90.
  • F. Qi, Monotonicity results and inequalities for the gamma and incomplete gamma functions, Mathematical Inequalities and Applications, 5(1)(2002), 61-67.
  • F. Qi, Bounds for the Ratio of Two Gamma Functions, Journal of Inequalities and Applications, Vol. 2010, Article ID 493058.
  • J. Sándor, On certain inequalities for the Gamma function, RGMIA Res. Rep. Coll., 9(1)(2006), Art. 11.
  • J.G. Wendel, Note on the gamma function, Amer. Math. Monthly, 55(9)(1948), 563-564.

Some Inequalities bounding certain ratios of the (p,k)-Gamma function

Year 2016, Volume: 4 Issue: 4, 329 - 336, 31.12.2016

Abstract


References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976.
  • R. Díaz and E. Pariguan, On hypergeometric functions and Pachhammer k-symbol, Divulgaciones Matemtícas, 15(2)(2007), 179-192.
  • W. Gautschi, Some elementary inequalities relating to the Gamma and incomplete Gamma function, Journal of Mathematics and Physics, 38(1)(1959), 77-81.
  • A. Laforgia and P. Natalini, On Some Inequalities for the Gamma Function, Advances in Dynamical Systems and Applications, 8(2)(2013), 261-267.
  • J. Lew, J. Frauenthal, N. Keyfitz, On the Average Distances in a Circular Disc, SIAM Rev., 20(3)(1978), 584-592.
  • K. Nantomah and E. Prempeh, Certain Inequalities Involving the q-Deformed Gamma Function , Probl. Anal. Issues Anal., 4(22)(1)(2015), 57-65.
  • K. Nantomah and E. Prempeh, Inequalities for the (q,k)-Deformed Gamma Function emanating from Certain Problems of Traffic Flow, Honam Mathematical Journal, 38(1)(2016), 9-15.
  • K. Nantomah. E. Prempeh and S. B. Twum, On a (p,k)-analogue of the Gamma function and some associated Inequalities, Moroccan Journal of Pure and Applied Analysis, 2(2)(2016), 79-90.
  • F. Qi, Monotonicity results and inequalities for the gamma and incomplete gamma functions, Mathematical Inequalities and Applications, 5(1)(2002), 61-67.
  • F. Qi, Bounds for the Ratio of Two Gamma Functions, Journal of Inequalities and Applications, Vol. 2010, Article ID 493058.
  • J. Sándor, On certain inequalities for the Gamma function, RGMIA Res. Rep. Coll., 9(1)(2006), Art. 11.
  • J.G. Wendel, Note on the gamma function, Amer. Math. Monthly, 55(9)(1948), 563-564.
There are 12 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Kwara Nantomah

Publication Date December 31, 2016
Published in Issue Year 2016 Volume: 4 Issue: 4

Cite

APA Nantomah, K. (2016). Some Inequalities bounding certain ratios of the (p,k)-Gamma function. New Trends in Mathematical Sciences, 4(4), 329-336.
AMA Nantomah K. Some Inequalities bounding certain ratios of the (p,k)-Gamma function. New Trends in Mathematical Sciences. December 2016;4(4):329-336.
Chicago Nantomah, Kwara. “Some Inequalities Bounding Certain Ratios of the (p,k)-Gamma Function”. New Trends in Mathematical Sciences 4, no. 4 (December 2016): 329-36.
EndNote Nantomah K (December 1, 2016) Some Inequalities bounding certain ratios of the (p,k)-Gamma function. New Trends in Mathematical Sciences 4 4 329–336.
IEEE K. Nantomah, “Some Inequalities bounding certain ratios of the (p,k)-Gamma function”, New Trends in Mathematical Sciences, vol. 4, no. 4, pp. 329–336, 2016.
ISNAD Nantomah, Kwara. “Some Inequalities Bounding Certain Ratios of the (p,k)-Gamma Function”. New Trends in Mathematical Sciences 4/4 (December 2016), 329-336.
JAMA Nantomah K. Some Inequalities bounding certain ratios of the (p,k)-Gamma function. New Trends in Mathematical Sciences. 2016;4:329–336.
MLA Nantomah, Kwara. “Some Inequalities Bounding Certain Ratios of the (p,k)-Gamma Function”. New Trends in Mathematical Sciences, vol. 4, no. 4, 2016, pp. 329-36.
Vancouver Nantomah K. Some Inequalities bounding certain ratios of the (p,k)-Gamma function. New Trends in Mathematical Sciences. 2016;4(4):329-36.