T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976.
R. Díaz and E. Pariguan, On hypergeometric functions and Pachhammer k-symbol, Divulgaciones Matemtícas, 15(2)(2007), 179-192.
W. Gautschi, Some elementary inequalities relating to the Gamma and incomplete Gamma function, Journal of Mathematics and Physics, 38(1)(1959), 77-81.
A. Laforgia and P. Natalini, On Some Inequalities for the Gamma Function, Advances in Dynamical Systems and Applications, 8(2)(2013), 261-267.
J. Lew, J. Frauenthal, N. Keyfitz, On the Average Distances in a Circular Disc, SIAM Rev., 20(3)(1978), 584-592.
K. Nantomah and E. Prempeh, Certain Inequalities Involving the q-Deformed Gamma Function , Probl. Anal. Issues Anal., 4(22)(1)(2015), 57-65.
K. Nantomah and E. Prempeh, Inequalities for the (q,k)-Deformed Gamma Function emanating from Certain Problems of Traffic Flow, Honam Mathematical Journal, 38(1)(2016), 9-15.
K. Nantomah. E. Prempeh and S. B. Twum, On a (p,k)-analogue of the Gamma function and some associated Inequalities, Moroccan Journal of Pure and Applied Analysis, 2(2)(2016), 79-90.
F. Qi, Monotonicity results and inequalities for the gamma and incomplete gamma functions, Mathematical Inequalities and Applications, 5(1)(2002), 61-67.
F. Qi, Bounds for the Ratio of Two Gamma Functions, Journal of Inequalities and Applications, Vol. 2010, Article ID 493058.
J. Sándor, On certain inequalities for the Gamma function, RGMIA Res. Rep. Coll., 9(1)(2006), Art. 11.
J.G. Wendel, Note on the gamma function, Amer. Math. Monthly, 55(9)(1948), 563-564.
Some Inequalities bounding certain ratios of the (p,k)-Gamma function
Year 2016,
Volume: 4 Issue: 4, 329 - 336, 31.12.2016
T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976.
R. Díaz and E. Pariguan, On hypergeometric functions and Pachhammer k-symbol, Divulgaciones Matemtícas, 15(2)(2007), 179-192.
W. Gautschi, Some elementary inequalities relating to the Gamma and incomplete Gamma function, Journal of Mathematics and Physics, 38(1)(1959), 77-81.
A. Laforgia and P. Natalini, On Some Inequalities for the Gamma Function, Advances in Dynamical Systems and Applications, 8(2)(2013), 261-267.
J. Lew, J. Frauenthal, N. Keyfitz, On the Average Distances in a Circular Disc, SIAM Rev., 20(3)(1978), 584-592.
K. Nantomah and E. Prempeh, Certain Inequalities Involving the q-Deformed Gamma Function , Probl. Anal. Issues Anal., 4(22)(1)(2015), 57-65.
K. Nantomah and E. Prempeh, Inequalities for the (q,k)-Deformed Gamma Function emanating from Certain Problems of Traffic Flow, Honam Mathematical Journal, 38(1)(2016), 9-15.
K. Nantomah. E. Prempeh and S. B. Twum, On a (p,k)-analogue of the Gamma function and some associated Inequalities, Moroccan Journal of Pure and Applied Analysis, 2(2)(2016), 79-90.
F. Qi, Monotonicity results and inequalities for the gamma and incomplete gamma functions, Mathematical Inequalities and Applications, 5(1)(2002), 61-67.
F. Qi, Bounds for the Ratio of Two Gamma Functions, Journal of Inequalities and Applications, Vol. 2010, Article ID 493058.
J. Sándor, On certain inequalities for the Gamma function, RGMIA Res. Rep. Coll., 9(1)(2006), Art. 11.
J.G. Wendel, Note on the gamma function, Amer. Math. Monthly, 55(9)(1948), 563-564.
Nantomah, K. (2016). Some Inequalities bounding certain ratios of the (p,k)-Gamma function. New Trends in Mathematical Sciences, 4(4), 329-336.
AMA
Nantomah K. Some Inequalities bounding certain ratios of the (p,k)-Gamma function. New Trends in Mathematical Sciences. December 2016;4(4):329-336.
Chicago
Nantomah, Kwara. “Some Inequalities Bounding Certain Ratios of the (p,k)-Gamma Function”. New Trends in Mathematical Sciences 4, no. 4 (December 2016): 329-36.
EndNote
Nantomah K (December 1, 2016) Some Inequalities bounding certain ratios of the (p,k)-Gamma function. New Trends in Mathematical Sciences 4 4 329–336.
IEEE
K. Nantomah, “Some Inequalities bounding certain ratios of the (p,k)-Gamma function”, New Trends in Mathematical Sciences, vol. 4, no. 4, pp. 329–336, 2016.
ISNAD
Nantomah, Kwara. “Some Inequalities Bounding Certain Ratios of the (p,k)-Gamma Function”. New Trends in Mathematical Sciences 4/4 (December 2016), 329-336.
JAMA
Nantomah K. Some Inequalities bounding certain ratios of the (p,k)-Gamma function. New Trends in Mathematical Sciences. 2016;4:329–336.
MLA
Nantomah, Kwara. “Some Inequalities Bounding Certain Ratios of the (p,k)-Gamma Function”. New Trends in Mathematical Sciences, vol. 4, no. 4, 2016, pp. 329-36.
Vancouver
Nantomah K. Some Inequalities bounding certain ratios of the (p,k)-Gamma function. New Trends in Mathematical Sciences. 2016;4(4):329-36.