Case Report
BibTex RIS Cite
Year 2017, Volume: 5 Issue: 1, 34 - 39, 01.01.2017

Abstract

References

  • Sasaki, S., On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. Journal, 10 (3), 338-354, 1958.
  • Dombrowski, P., On the differential geometry of tangent bundles, J. Reine Angew. Math., 210, 73–88, 1962.
  • Musso, E. and Tricerri F., Riemannian metrics on tangent bundles, Ann. Mat. Pura Appl. 150 (4), 1–19, 1988.
  • Sekizawa, M., Curvatures of tangent bundles with Cheeger–Gromoll metric, Tokyo J. Math. 14, 407–417, 1991.
  • Anastasiei, M., Locally conformal Kaehler structures on tangent bundle of a space form, Libertas Math. 19, 71–76, 1999.
  • Benyounes, M, Loubeau, E., and Todjihounde, L., Harmonic maps and Kaluza-Klein metrics on spheres, 42 (3), 791-821, 2012.
  • Mok, K.P., On the differential geometry of frame bundles of Riemannian manifolds, J.für die reine und angewandte Math., 302, 16-31, 1978.
  • Yano, K., and Ishihara S., Tangent and cotangent bundles, Marcel Dekker, 1973.
  • Salimov, A. and Kazimova S., Geodesics of the Cheeger-Gromoll metric, Turkish J. of Math., 33, 99-105, 2009.
  • Gezer, A. and Altunbaş, M., Some notes concerning Riemannian metrics of Cheeger-Gromoll type, J. Math. Anal. Appl., 396, 119-132, 2012.

Some applications on tangent bundle with Kaluza-Klein metric

Year 2017, Volume: 5 Issue: 1, 34 - 39, 01.01.2017

Abstract

In this paper, differential equations of geodesics;
parallelism, incompressibility and closeness conditions of the horizontal and
complete lift of the vector fields are investigated with respect to
Kaluza-Klein metric on tangent bundle.

References

  • Sasaki, S., On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. Journal, 10 (3), 338-354, 1958.
  • Dombrowski, P., On the differential geometry of tangent bundles, J. Reine Angew. Math., 210, 73–88, 1962.
  • Musso, E. and Tricerri F., Riemannian metrics on tangent bundles, Ann. Mat. Pura Appl. 150 (4), 1–19, 1988.
  • Sekizawa, M., Curvatures of tangent bundles with Cheeger–Gromoll metric, Tokyo J. Math. 14, 407–417, 1991.
  • Anastasiei, M., Locally conformal Kaehler structures on tangent bundle of a space form, Libertas Math. 19, 71–76, 1999.
  • Benyounes, M, Loubeau, E., and Todjihounde, L., Harmonic maps and Kaluza-Klein metrics on spheres, 42 (3), 791-821, 2012.
  • Mok, K.P., On the differential geometry of frame bundles of Riemannian manifolds, J.für die reine und angewandte Math., 302, 16-31, 1978.
  • Yano, K., and Ishihara S., Tangent and cotangent bundles, Marcel Dekker, 1973.
  • Salimov, A. and Kazimova S., Geodesics of the Cheeger-Gromoll metric, Turkish J. of Math., 33, 99-105, 2009.
  • Gezer, A. and Altunbaş, M., Some notes concerning Riemannian metrics of Cheeger-Gromoll type, J. Math. Anal. Appl., 396, 119-132, 2012.
There are 10 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Murat Altunbas

Merve Tastan This is me

Publication Date January 1, 2017
Published in Issue Year 2017 Volume: 5 Issue: 1

Cite

APA Altunbas, M., & Tastan, M. (2017). Some applications on tangent bundle with Kaluza-Klein metric. New Trends in Mathematical Sciences, 5(1), 34-39.
AMA Altunbas M, Tastan M. Some applications on tangent bundle with Kaluza-Klein metric. New Trends in Mathematical Sciences. January 2017;5(1):34-39.
Chicago Altunbas, Murat, and Merve Tastan. “Some Applications on Tangent Bundle With Kaluza-Klein Metric”. New Trends in Mathematical Sciences 5, no. 1 (January 2017): 34-39.
EndNote Altunbas M, Tastan M (January 1, 2017) Some applications on tangent bundle with Kaluza-Klein metric. New Trends in Mathematical Sciences 5 1 34–39.
IEEE M. Altunbas and M. Tastan, “Some applications on tangent bundle with Kaluza-Klein metric”, New Trends in Mathematical Sciences, vol. 5, no. 1, pp. 34–39, 2017.
ISNAD Altunbas, Murat - Tastan, Merve. “Some Applications on Tangent Bundle With Kaluza-Klein Metric”. New Trends in Mathematical Sciences 5/1 (January 2017), 34-39.
JAMA Altunbas M, Tastan M. Some applications on tangent bundle with Kaluza-Klein metric. New Trends in Mathematical Sciences. 2017;5:34–39.
MLA Altunbas, Murat and Merve Tastan. “Some Applications on Tangent Bundle With Kaluza-Klein Metric”. New Trends in Mathematical Sciences, vol. 5, no. 1, 2017, pp. 34-39.
Vancouver Altunbas M, Tastan M. Some applications on tangent bundle with Kaluza-Klein metric. New Trends in Mathematical Sciences. 2017;5(1):34-9.