Year 2017,
Volume: 5 Issue: 1, 34 - 39, 01.01.2017
Murat Altunbas
,
Merve Tastan
References
- Sasaki, S., On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. Journal, 10 (3), 338-354, 1958.
- Dombrowski, P., On the differential geometry of tangent bundles, J. Reine Angew. Math., 210, 73–88, 1962.
- Musso, E. and Tricerri F., Riemannian metrics on tangent bundles, Ann. Mat. Pura Appl. 150 (4), 1–19, 1988.
- Sekizawa, M., Curvatures of tangent bundles with Cheeger–Gromoll metric, Tokyo J. Math. 14, 407–417, 1991.
- Anastasiei, M., Locally conformal Kaehler structures on tangent bundle of a space form, Libertas Math. 19, 71–76, 1999.
- Benyounes, M, Loubeau, E., and Todjihounde, L., Harmonic maps and Kaluza-Klein metrics on spheres, 42 (3), 791-821, 2012.
- Mok, K.P., On the differential geometry of frame bundles of Riemannian manifolds, J.für die reine und angewandte Math., 302, 16-31, 1978.
- Yano, K., and Ishihara S., Tangent and cotangent bundles, Marcel Dekker, 1973.
- Salimov, A. and Kazimova S., Geodesics of the Cheeger-Gromoll metric, Turkish J. of Math., 33, 99-105, 2009.
- Gezer, A. and Altunbaş, M., Some notes concerning Riemannian metrics of Cheeger-Gromoll type, J. Math. Anal. Appl., 396, 119-132, 2012.
Some applications on tangent bundle with Kaluza-Klein metric
Year 2017,
Volume: 5 Issue: 1, 34 - 39, 01.01.2017
Murat Altunbas
,
Merve Tastan
Abstract
In this paper, differential equations of geodesics;
parallelism, incompressibility and closeness conditions of the horizontal and
complete lift of the vector fields are investigated with respect to
Kaluza-Klein metric on tangent bundle.
References
- Sasaki, S., On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. Journal, 10 (3), 338-354, 1958.
- Dombrowski, P., On the differential geometry of tangent bundles, J. Reine Angew. Math., 210, 73–88, 1962.
- Musso, E. and Tricerri F., Riemannian metrics on tangent bundles, Ann. Mat. Pura Appl. 150 (4), 1–19, 1988.
- Sekizawa, M., Curvatures of tangent bundles with Cheeger–Gromoll metric, Tokyo J. Math. 14, 407–417, 1991.
- Anastasiei, M., Locally conformal Kaehler structures on tangent bundle of a space form, Libertas Math. 19, 71–76, 1999.
- Benyounes, M, Loubeau, E., and Todjihounde, L., Harmonic maps and Kaluza-Klein metrics on spheres, 42 (3), 791-821, 2012.
- Mok, K.P., On the differential geometry of frame bundles of Riemannian manifolds, J.für die reine und angewandte Math., 302, 16-31, 1978.
- Yano, K., and Ishihara S., Tangent and cotangent bundles, Marcel Dekker, 1973.
- Salimov, A. and Kazimova S., Geodesics of the Cheeger-Gromoll metric, Turkish J. of Math., 33, 99-105, 2009.
- Gezer, A. and Altunbaş, M., Some notes concerning Riemannian metrics of Cheeger-Gromoll type, J. Math. Anal. Appl., 396, 119-132, 2012.