V. Bala'z ̆, J. C ̆erven'ansky', P. Kostyrko, T. S ̆ala't, I-convergence and I-continuity of real functions, Faculty of Natural Sciences, Constantine the Philosoper University, Nitra, Acta Mathematical 5, 43-50, 2002.
N. Bourbaki, General Topology, Part (I) (transl.), Addison- Wesley, Reading (1966).
K. Demirci, I-limit superior and limit inferior, Math. Commun. 6 (2001), 165-172.
H. Fast, sur la convergence statistique, colloq. Math. 2 (1951), 241-244.
H. Halberstem, K. F. Roth, Sequences, Springer, New York, 1993.
D. S. Jamwal, R. Jamwal, S. Sharma, I-convergence of filters, New Trends in Mathematical Sciences, 2016,(accepted).
P. Kostyrko, T.S ̆ala't, W. Wilczynski, I-convergence, Real Analysis, Exch. 26 (2) (2000/2001), 669-685.
P. Kostyrko, M. Mac ̆aj, T.S ̆ala't, M. Sleziak, I-convergence and extremal I-limit points, Math. Slovaca, 55 (4) (2005), 443-464.
B. K. Lahiri, P. Das, Further results on I-limit superior and I-limit inferior, Math. Commun., 8 (2003), 151-156.
B. K. Lahiri, P. Das, I and I^*-convergence in topological spaces, Math. Bohemica, 130 (2) (2005), 153-160.
B. K. Lahiri, P. Das, I and I^*-convergence of nets, Real Analysis Exchange, 33 (2) (2007/2008), 431-442.
M. Mac ̆aj, T.S ̆ala't, Statistical convergence of subsequences of a given sequence, Math. Bohemica, 126 (2001), 191-208.
M. Mursaleen and A. Alotaibi, On I–convergence in random 2–normed spaces, Math. Slovaca, 61(6) (2011) 933–940.
M. Mursaleen and S. A. Mohiuddine, On ideal convergence of double sequences in probabilistic normed spaces, Math. Reports, 12(62)(4) (2010) 359-371.
M. Mursaleen and S. A. Mohiuddine, On ideal convergence in probabilistic normed spaces, Math. Slovaca, 62(1) (2012) 49-62.
M. Mursaleen, S. A. Mohiuddine and O. H. H. Edely, On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces, Comput. Math. Appl., 59 (2010) 603-611.
I. Niven, H. S. Zuckerman, An introduction to the theory of numbers, 4th Ed., John Wiley, New York, 1980.
T.S ̆ala't, On statistically convergent sequences of real numbers, Mathematical Slovaca, 30 (1980), No. 2, 139-150.
T.S ̆ala't, B. C. Tripathy, M. Ziman, On I-convergence field, Italian J. of Pure Appl. Math. 17 (2005), 45-54.
A.Sahiner, M. Gürdal, S. Saltan and H. Gunawan, Ideal convergence in 2-normed spaces, Taiwanese J. Math., 11(5) (2007), 1477-1484.
I. J. Schoenberg, The integrability of certain function and related summability methods, Am. Math. Mon. 66 (1959), 361-375.
S. Willard, General Topology, Addison-Wesley Pub. Co. 1970.
Some more results on i-convergence of filters
Year 2017,
Volume: 5 Issue: 1, 190 - 195, 01.01.2017
V. Bala'z ̆, J. C ̆erven'ansky', P. Kostyrko, T. S ̆ala't, I-convergence and I-continuity of real functions, Faculty of Natural Sciences, Constantine the Philosoper University, Nitra, Acta Mathematical 5, 43-50, 2002.
N. Bourbaki, General Topology, Part (I) (transl.), Addison- Wesley, Reading (1966).
K. Demirci, I-limit superior and limit inferior, Math. Commun. 6 (2001), 165-172.
H. Fast, sur la convergence statistique, colloq. Math. 2 (1951), 241-244.
H. Halberstem, K. F. Roth, Sequences, Springer, New York, 1993.
D. S. Jamwal, R. Jamwal, S. Sharma, I-convergence of filters, New Trends in Mathematical Sciences, 2016,(accepted).
P. Kostyrko, T.S ̆ala't, W. Wilczynski, I-convergence, Real Analysis, Exch. 26 (2) (2000/2001), 669-685.
P. Kostyrko, M. Mac ̆aj, T.S ̆ala't, M. Sleziak, I-convergence and extremal I-limit points, Math. Slovaca, 55 (4) (2005), 443-464.
B. K. Lahiri, P. Das, Further results on I-limit superior and I-limit inferior, Math. Commun., 8 (2003), 151-156.
B. K. Lahiri, P. Das, I and I^*-convergence in topological spaces, Math. Bohemica, 130 (2) (2005), 153-160.
B. K. Lahiri, P. Das, I and I^*-convergence of nets, Real Analysis Exchange, 33 (2) (2007/2008), 431-442.
M. Mac ̆aj, T.S ̆ala't, Statistical convergence of subsequences of a given sequence, Math. Bohemica, 126 (2001), 191-208.
M. Mursaleen and A. Alotaibi, On I–convergence in random 2–normed spaces, Math. Slovaca, 61(6) (2011) 933–940.
M. Mursaleen and S. A. Mohiuddine, On ideal convergence of double sequences in probabilistic normed spaces, Math. Reports, 12(62)(4) (2010) 359-371.
M. Mursaleen and S. A. Mohiuddine, On ideal convergence in probabilistic normed spaces, Math. Slovaca, 62(1) (2012) 49-62.
M. Mursaleen, S. A. Mohiuddine and O. H. H. Edely, On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces, Comput. Math. Appl., 59 (2010) 603-611.
I. Niven, H. S. Zuckerman, An introduction to the theory of numbers, 4th Ed., John Wiley, New York, 1980.
T.S ̆ala't, On statistically convergent sequences of real numbers, Mathematical Slovaca, 30 (1980), No. 2, 139-150.
T.S ̆ala't, B. C. Tripathy, M. Ziman, On I-convergence field, Italian J. of Pure Appl. Math. 17 (2005), 45-54.
A.Sahiner, M. Gürdal, S. Saltan and H. Gunawan, Ideal convergence in 2-normed spaces, Taiwanese J. Math., 11(5) (2007), 1477-1484.
I. J. Schoenberg, The integrability of certain function and related summability methods, Am. Math. Mon. 66 (1959), 361-375.
S. Willard, General Topology, Addison-Wesley Pub. Co. 1970.
Jamwal, R., Sharma, S., & Jamwal, D. S. (2017). Some more results on i-convergence of filters. New Trends in Mathematical Sciences, 5(1), 190-195.
AMA
Jamwal R, Sharma S, Jamwal DS. Some more results on i-convergence of filters. New Trends in Mathematical Sciences. January 2017;5(1):190-195.
Chicago
Jamwal, Rohini, Shivani Sharma, and Dalip Singh Jamwal. “Some More Results on I-Convergence of Filters”. New Trends in Mathematical Sciences 5, no. 1 (January 2017): 190-95.
EndNote
Jamwal R, Sharma S, Jamwal DS (January 1, 2017) Some more results on i-convergence of filters. New Trends in Mathematical Sciences 5 1 190–195.
IEEE
R. Jamwal, S. Sharma, and D. S. Jamwal, “Some more results on i-convergence of filters”, New Trends in Mathematical Sciences, vol. 5, no. 1, pp. 190–195, 2017.
ISNAD
Jamwal, Rohini et al. “Some More Results on I-Convergence of Filters”. New Trends in Mathematical Sciences 5/1 (January 2017), 190-195.
JAMA
Jamwal R, Sharma S, Jamwal DS. Some more results on i-convergence of filters. New Trends in Mathematical Sciences. 2017;5:190–195.
MLA
Jamwal, Rohini et al. “Some More Results on I-Convergence of Filters”. New Trends in Mathematical Sciences, vol. 5, no. 1, 2017, pp. 190-5.
Vancouver
Jamwal R, Sharma S, Jamwal DS. Some more results on i-convergence of filters. New Trends in Mathematical Sciences. 2017;5(1):190-5.