Research Article
BibTex RIS Cite

A new two step iterative scheme for a finite family of nonself I-asymptotically nonexpansive mappings in Banach space

Year 2017, Volume: 5 Issue: 2, 16 - 28, 30.03.2017

Abstract

Let E be a real uniformly convex Banach space, K be a nonempty closed convex subset of E and let Ti : K → E be N Ii-asymptotically nonexpansive nonself mappings and Ii be N asymptotically nonexpansive nonself mappings. It is proved that a new two step iterative algorithm converges weakly to a q ∈ F in a real uniformly convex Banach space such that its dual has the Kadec-Klee property and strongly under condition (B) in a real uniformly convex Banach space. It presents some new results in this paper.

References

  • K. Goebel, W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 35 (1972), 171-174.
  • S. Temir, On the convergence theorems of implicit iteration process for a finite family of I-asymptotically nonexpansive mappings, J. Comput. Appl. Math. 225 (2009) 398–405.
  • S. Temir, O. Gul, Convergence theorem for I-asymptotically quasi-nonexpansive mapping in Hilbert space, J. Math. Anal. Appl. 329 (2007) 759–765.
  • L. Yang, X. Xie, Weak and strong convergence theorems for a finite family of I-asymptotically nonexpansive mappings, Appl. Math. Comput. 216 (2010) 1057–1064.
  • K.K. Tan and H.K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, Journal of Mathematical Analysis and Applications, vol. 178, no. 2, pp. 301–308, 1993.
  • S. Akbulut, S. H. Khan, M. Ozdemir, An iteration process for common fixed points of two nonself asymptotically nonexpansive mappings, An. S¸ t. Univ. Ovidius Constanta, Vol. 20(1), 2012, 15-30.
  • H.F. Senter, W.G. Dotson, Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc., 44(1974), 375-380.
  • J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 43(1991), 153-159.
  • M.O. Osilike, A. Udomene, Demiclosedness principle and convergence theorems for strictly pseudocontractive mappings of Browder–Petryshyn type, J. Math. Anal. Appl. 256 (2001) 431–445.
  • R.P. Agarwal, Donal O’Regan and D.R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J.Nonliear Convex. Anal.8(1)(2007), 61–79.
  • C.E. Chidume, E.U. Ofoedu, H. Zegeye, Strong and weak convergence theorems for asymptotically nonexpansive mappings, J. Math. Anal. Appl., 280 (2003), 364-374.
  • J.G. Falset, W. Kaczor, T. Kuczumow, S. Reich, Weak convergence theorems for asymptotically nonexpansive mappings and semigroups, Nonlinear Anal. 43 (2001) 377–401.
  • S. Thianwan, Common fixed point of new iterations for two asymptotically nonexpansive nonself-mappings in a Banach space, J. Comput. Appl. Math. 224 (2009) 688-695.
  • S. Thianwan, New Iterations with Errors for Approximating Common Fixed Points for two Generalized Asymptotically Quasi-Nonexpansive Nonself-Mappings, Mathematical Notes, 2011, Vol. 89, No. 3, pp. 397-407.
  • M.O. Osilike, A. Udomene, Demiclosedness principle and convergence theorems for strictly pseudocontractive mappings of Browder–Petryshyn type, J. Math. Anal. Appl. 256 (2001) 431-445.
  • W. Kaczor, Weak convergence of almost orbits of asymptotically nonexpansive commutative semigroups, J. Math. Anal. Appl. 272 (2002) 565–574.
  • B. Gunduz and S. Akbulut, Convergence theorems of a new three-step iteration for nonself asymptotically nonexpansive mappings, Thai J. Math. 13 (2015), no. 2, 465-480.
  • B. Gunduz and S. Akbulut, On weak and strong convergence theorems for a finite family of nonself I-asymptotically nonexpansive mappings, Math. Morav. 19 (2015), no. 2, 49-64.
  • B. Gunduz, S.H. Khan, and S. Akbulut, On convergence of an implicit iterative algorithm for non self asymptotically nonexpansive mappings, Hacet. J. Math. Stat. 43 (2014), no. 3, 399-411.
  • B. Gunduz and S. Akbulut, A one-step implicit iterative process for a finite family of I-nonexpansive mappings in Kohlenbach hyperbolic spaces, Math Sci, 2016, 10, 55-61.
  • B. Gunduz and S. Akbulut, On the convergence of an iteration process for totally asymptotically I-nonexpansive mappings, J. Nonlinear Anal. Optim., Vol.7, No.1, (2016), 17-30.
  • I. Yildirim and F. Gu, A new iterative process for approximating common fixed points of nonself I-asymptotically quasinonexpansive mappings, Appl. Math. J. Chinese Univ. Ser. B 27 (2012), no. 4, 489–502.
  • S. H. Khan and H. Fukhar-ud-din,Weak and strong convergence of a scheme with errors for two nonexpansive mappings, Nonlinear Anal.TMA, 61(8) 2005, 1295-1301.
  • B. Gunduz, A new multistep iteration for a finite family of asymptotically quasi-nonexpansive mappings in convex metric spaces, J. Nonlinear Sci. Appl. 9 (2016), 1365-1372.
  • B. Gunduz, Convergence of a new multistep iteration in convex cone metric spaces, Commun. Korean Math. Soc. 32(1) (2017), 39-46.
  • A. Sahin and M. Basarir, On the strong convergence of a modified S-iteration process for asymptotically quasi-nonexpansive mappings in a CAT(0) space, Fixed Point Theory Appl. 2013, Article ID 12, 2013.
  • A. Sahin and M. Basarir, Convergence and data dependence results of an iteration process in a hyperbolic space, Filomat, 30:3(2016), 569–582.
Year 2017, Volume: 5 Issue: 2, 16 - 28, 30.03.2017

Abstract

References

  • K. Goebel, W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 35 (1972), 171-174.
  • S. Temir, On the convergence theorems of implicit iteration process for a finite family of I-asymptotically nonexpansive mappings, J. Comput. Appl. Math. 225 (2009) 398–405.
  • S. Temir, O. Gul, Convergence theorem for I-asymptotically quasi-nonexpansive mapping in Hilbert space, J. Math. Anal. Appl. 329 (2007) 759–765.
  • L. Yang, X. Xie, Weak and strong convergence theorems for a finite family of I-asymptotically nonexpansive mappings, Appl. Math. Comput. 216 (2010) 1057–1064.
  • K.K. Tan and H.K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, Journal of Mathematical Analysis and Applications, vol. 178, no. 2, pp. 301–308, 1993.
  • S. Akbulut, S. H. Khan, M. Ozdemir, An iteration process for common fixed points of two nonself asymptotically nonexpansive mappings, An. S¸ t. Univ. Ovidius Constanta, Vol. 20(1), 2012, 15-30.
  • H.F. Senter, W.G. Dotson, Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc., 44(1974), 375-380.
  • J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 43(1991), 153-159.
  • M.O. Osilike, A. Udomene, Demiclosedness principle and convergence theorems for strictly pseudocontractive mappings of Browder–Petryshyn type, J. Math. Anal. Appl. 256 (2001) 431–445.
  • R.P. Agarwal, Donal O’Regan and D.R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J.Nonliear Convex. Anal.8(1)(2007), 61–79.
  • C.E. Chidume, E.U. Ofoedu, H. Zegeye, Strong and weak convergence theorems for asymptotically nonexpansive mappings, J. Math. Anal. Appl., 280 (2003), 364-374.
  • J.G. Falset, W. Kaczor, T. Kuczumow, S. Reich, Weak convergence theorems for asymptotically nonexpansive mappings and semigroups, Nonlinear Anal. 43 (2001) 377–401.
  • S. Thianwan, Common fixed point of new iterations for two asymptotically nonexpansive nonself-mappings in a Banach space, J. Comput. Appl. Math. 224 (2009) 688-695.
  • S. Thianwan, New Iterations with Errors for Approximating Common Fixed Points for two Generalized Asymptotically Quasi-Nonexpansive Nonself-Mappings, Mathematical Notes, 2011, Vol. 89, No. 3, pp. 397-407.
  • M.O. Osilike, A. Udomene, Demiclosedness principle and convergence theorems for strictly pseudocontractive mappings of Browder–Petryshyn type, J. Math. Anal. Appl. 256 (2001) 431-445.
  • W. Kaczor, Weak convergence of almost orbits of asymptotically nonexpansive commutative semigroups, J. Math. Anal. Appl. 272 (2002) 565–574.
  • B. Gunduz and S. Akbulut, Convergence theorems of a new three-step iteration for nonself asymptotically nonexpansive mappings, Thai J. Math. 13 (2015), no. 2, 465-480.
  • B. Gunduz and S. Akbulut, On weak and strong convergence theorems for a finite family of nonself I-asymptotically nonexpansive mappings, Math. Morav. 19 (2015), no. 2, 49-64.
  • B. Gunduz, S.H. Khan, and S. Akbulut, On convergence of an implicit iterative algorithm for non self asymptotically nonexpansive mappings, Hacet. J. Math. Stat. 43 (2014), no. 3, 399-411.
  • B. Gunduz and S. Akbulut, A one-step implicit iterative process for a finite family of I-nonexpansive mappings in Kohlenbach hyperbolic spaces, Math Sci, 2016, 10, 55-61.
  • B. Gunduz and S. Akbulut, On the convergence of an iteration process for totally asymptotically I-nonexpansive mappings, J. Nonlinear Anal. Optim., Vol.7, No.1, (2016), 17-30.
  • I. Yildirim and F. Gu, A new iterative process for approximating common fixed points of nonself I-asymptotically quasinonexpansive mappings, Appl. Math. J. Chinese Univ. Ser. B 27 (2012), no. 4, 489–502.
  • S. H. Khan and H. Fukhar-ud-din,Weak and strong convergence of a scheme with errors for two nonexpansive mappings, Nonlinear Anal.TMA, 61(8) 2005, 1295-1301.
  • B. Gunduz, A new multistep iteration for a finite family of asymptotically quasi-nonexpansive mappings in convex metric spaces, J. Nonlinear Sci. Appl. 9 (2016), 1365-1372.
  • B. Gunduz, Convergence of a new multistep iteration in convex cone metric spaces, Commun. Korean Math. Soc. 32(1) (2017), 39-46.
  • A. Sahin and M. Basarir, On the strong convergence of a modified S-iteration process for asymptotically quasi-nonexpansive mappings in a CAT(0) space, Fixed Point Theory Appl. 2013, Article ID 12, 2013.
  • A. Sahin and M. Basarir, Convergence and data dependence results of an iteration process in a hyperbolic space, Filomat, 30:3(2016), 569–582.
There are 27 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Birol Gunduz

Publication Date March 30, 2017
Published in Issue Year 2017 Volume: 5 Issue: 2

Cite

APA Gunduz, B. (2017). A new two step iterative scheme for a finite family of nonself I-asymptotically nonexpansive mappings in Banach space. New Trends in Mathematical Sciences, 5(2), 16-28.
AMA Gunduz B. A new two step iterative scheme for a finite family of nonself I-asymptotically nonexpansive mappings in Banach space. New Trends in Mathematical Sciences. March 2017;5(2):16-28.
Chicago Gunduz, Birol. “A New Two Step Iterative Scheme for a Finite Family of Nonself I-Asymptotically Nonexpansive Mappings in Banach Space”. New Trends in Mathematical Sciences 5, no. 2 (March 2017): 16-28.
EndNote Gunduz B (March 1, 2017) A new two step iterative scheme for a finite family of nonself I-asymptotically nonexpansive mappings in Banach space. New Trends in Mathematical Sciences 5 2 16–28.
IEEE B. Gunduz, “A new two step iterative scheme for a finite family of nonself I-asymptotically nonexpansive mappings in Banach space”, New Trends in Mathematical Sciences, vol. 5, no. 2, pp. 16–28, 2017.
ISNAD Gunduz, Birol. “A New Two Step Iterative Scheme for a Finite Family of Nonself I-Asymptotically Nonexpansive Mappings in Banach Space”. New Trends in Mathematical Sciences 5/2 (March 2017), 16-28.
JAMA Gunduz B. A new two step iterative scheme for a finite family of nonself I-asymptotically nonexpansive mappings in Banach space. New Trends in Mathematical Sciences. 2017;5:16–28.
MLA Gunduz, Birol. “A New Two Step Iterative Scheme for a Finite Family of Nonself I-Asymptotically Nonexpansive Mappings in Banach Space”. New Trends in Mathematical Sciences, vol. 5, no. 2, 2017, pp. 16-28.
Vancouver Gunduz B. A new two step iterative scheme for a finite family of nonself I-asymptotically nonexpansive mappings in Banach space. New Trends in Mathematical Sciences. 2017;5(2):16-28.