Research Article
BibTex RIS Cite

Quarter-symmetric metric connection on a Lorentzian α-Sasakian manifold

Year 2017, Volume: 5 Issue: 2, 69 - 79, 30.03.2017

Abstract

In the present paper we study locally ϕ-symmetric, locally projective ϕ-symmetric, ϕ-recurrent and ϕ-projectively flat Lorentzian α-Sasakian manifold with respect to quarter-symmetric metric connection. Further, the existence of a Lorentzian α-Sasakian manifold admitting quarter-symmetric metric connection is shown by constructing an example.

References

  • Ajit Barman, On Lorentzian α -Sasakian manifolds admitting a type of semi-symmetric metric connection, Novi Sad J. Math., 44(2), 77-88, (2014).
  • E. Bartolotti,Sulla geometria della variata a connection affine,Ann. di Mat. 4(8), 53-101, (1930).
  • U. C. De and J. Sengupta, Quarter-symmetric metric connection on a Sasakian manifold,Communications de la Faculte des Sciences de l’Universite dAnkara., 49(1-2), 7-13, (2000).
  • S. Dey and A. Bhattacharyya, Some properties of Lorentzian al pha-Sasakian manifolds with respect to quarter-symmetric metric connection,Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 54, 2, 21-40, (2015).
  • A. Friedmann and J. A. Schouten, Uber die Geometrie der halbsymmetrischen Ubertragungen,Mathematische Zeitschrift., 21(1) 211223, (1924).
  • S. Golab,On semi-symmetric and quarter-symmetric linear connections,The Tensor Society., 22(3), 293-301,(1975).
  • H. A. Hayden,Subspaces of a space with torsion,Proceedings London Mathematical Society., 34, 27-50, (1932).
  • R. S. Mishra and S. N. Pandey, On quarter-connections metric F-connections,The Tensor Society., 34(1), 1-7, (1980).
  • A. K. Mondal and U. C. De, Some properties of a quarter-symmetric metric connection on a Sasakian manifold, Bulletin of Mathematical Analysis and Applications., 1(3), 99-108, (2009).
  • C. Patra and A. Bhattacharyya,Quarter-symmetric metric connection on pseudosymmetric Lorentzian α -Sasakian manifolds, International J.Math. Combin. 1, 46-59, (2013).
  • K. T. Pradeep Kumar, C. S. Bagewadi, and Venkatesha, On projective ö-symmetric K-contact manifold admitting quarter- symmetric metric connection, Differential Geometry Dynamical Systems., 13, 128-137, (2011).
  • K. T. Pradeep Kumar, Venkatesha, and C.S.Bagewadi,On φ -Recurrent Para-Sasakian Manifold Admitting Quarter-Symmetric, Metric Connection,ISRN Geometry., Article ID 317253, 10 pages doi:10.5402, (2012).
  • S. C. Rastogi, On quarter-symmetric metric connection,Comptes Rendus de l’Academie Bulgare des Sciences., 31(7), 811-814, (1978).
  • S. C. Rastogi, On quarter-symmetric metric connections,The Tensor Society, vol. 44, no. 2, pp. 133 141, (1987).
  • T. Takahashi, Sasakian φ -symmetric spaces,Tohoku math J., 29, 91-113, (1977).
  • Venkatesha, K.T.P. Kumar and C.S. Bagewadi, On Quarter-Symmetric Metric Connection in a Lorentzian Para-Sasakian, Manifold, Azerbaijan Journal of Mathematics., 5(1), 3-12, (2015).
  • S. Yadav and D. L. Suthar, Certain derivation on Lorentzian α -Sasakian manifolds,Mathematics and Decision Science 12 (2012).
  • K. Yano, On semi-symmetric metric connection, Revue Roumaine de Mathematiques Pures et Appliqu’ees., 15, 1579-1586, (1970).
  • K. Yano and T. Imai, Quarter-symmetric metric connections and their curvature tensors, The Tensor Society., 38, 13-18, (1982).
  • K. Yano and M. Kon, Structures on manifolds, volume 3 of Series in Pure Mathematics, World Scientific Publishing Co.,Singapore, (1984).
  • Yildiz A, Murathan C, On Lorentzian α -Sasakian manifolds, Kyungpook Math. J. 45, 95-103, (2005).
  • A. Yildiz and M. Turan,A Class of Lorentzian α -Sasakian Manifolds,Kyungpook Math. J. 49, 789-799, (2009).
  • A. Yildiz, U. C. De and Erhan Ata,On a type of Lorentzian α -Sasakian manifolds,MATH. REPORTS, 16(66), 1, 61-67, (2014).
Year 2017, Volume: 5 Issue: 2, 69 - 79, 30.03.2017

Abstract

References

  • Ajit Barman, On Lorentzian α -Sasakian manifolds admitting a type of semi-symmetric metric connection, Novi Sad J. Math., 44(2), 77-88, (2014).
  • E. Bartolotti,Sulla geometria della variata a connection affine,Ann. di Mat. 4(8), 53-101, (1930).
  • U. C. De and J. Sengupta, Quarter-symmetric metric connection on a Sasakian manifold,Communications de la Faculte des Sciences de l’Universite dAnkara., 49(1-2), 7-13, (2000).
  • S. Dey and A. Bhattacharyya, Some properties of Lorentzian al pha-Sasakian manifolds with respect to quarter-symmetric metric connection,Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 54, 2, 21-40, (2015).
  • A. Friedmann and J. A. Schouten, Uber die Geometrie der halbsymmetrischen Ubertragungen,Mathematische Zeitschrift., 21(1) 211223, (1924).
  • S. Golab,On semi-symmetric and quarter-symmetric linear connections,The Tensor Society., 22(3), 293-301,(1975).
  • H. A. Hayden,Subspaces of a space with torsion,Proceedings London Mathematical Society., 34, 27-50, (1932).
  • R. S. Mishra and S. N. Pandey, On quarter-connections metric F-connections,The Tensor Society., 34(1), 1-7, (1980).
  • A. K. Mondal and U. C. De, Some properties of a quarter-symmetric metric connection on a Sasakian manifold, Bulletin of Mathematical Analysis and Applications., 1(3), 99-108, (2009).
  • C. Patra and A. Bhattacharyya,Quarter-symmetric metric connection on pseudosymmetric Lorentzian α -Sasakian manifolds, International J.Math. Combin. 1, 46-59, (2013).
  • K. T. Pradeep Kumar, C. S. Bagewadi, and Venkatesha, On projective ö-symmetric K-contact manifold admitting quarter- symmetric metric connection, Differential Geometry Dynamical Systems., 13, 128-137, (2011).
  • K. T. Pradeep Kumar, Venkatesha, and C.S.Bagewadi,On φ -Recurrent Para-Sasakian Manifold Admitting Quarter-Symmetric, Metric Connection,ISRN Geometry., Article ID 317253, 10 pages doi:10.5402, (2012).
  • S. C. Rastogi, On quarter-symmetric metric connection,Comptes Rendus de l’Academie Bulgare des Sciences., 31(7), 811-814, (1978).
  • S. C. Rastogi, On quarter-symmetric metric connections,The Tensor Society, vol. 44, no. 2, pp. 133 141, (1987).
  • T. Takahashi, Sasakian φ -symmetric spaces,Tohoku math J., 29, 91-113, (1977).
  • Venkatesha, K.T.P. Kumar and C.S. Bagewadi, On Quarter-Symmetric Metric Connection in a Lorentzian Para-Sasakian, Manifold, Azerbaijan Journal of Mathematics., 5(1), 3-12, (2015).
  • S. Yadav and D. L. Suthar, Certain derivation on Lorentzian α -Sasakian manifolds,Mathematics and Decision Science 12 (2012).
  • K. Yano, On semi-symmetric metric connection, Revue Roumaine de Mathematiques Pures et Appliqu’ees., 15, 1579-1586, (1970).
  • K. Yano and T. Imai, Quarter-symmetric metric connections and their curvature tensors, The Tensor Society., 38, 13-18, (1982).
  • K. Yano and M. Kon, Structures on manifolds, volume 3 of Series in Pure Mathematics, World Scientific Publishing Co.,Singapore, (1984).
  • Yildiz A, Murathan C, On Lorentzian α -Sasakian manifolds, Kyungpook Math. J. 45, 95-103, (2005).
  • A. Yildiz and M. Turan,A Class of Lorentzian α -Sasakian Manifolds,Kyungpook Math. J. 49, 789-799, (2009).
  • A. Yildiz, U. C. De and Erhan Ata,On a type of Lorentzian α -Sasakian manifolds,MATH. REPORTS, 16(66), 1, 61-67, (2014).
There are 23 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Venkatesha Venkatesha

Divyashree G. This is me

Publication Date March 30, 2017
Published in Issue Year 2017 Volume: 5 Issue: 2

Cite

APA Venkatesha, V., & G., D. (2017). Quarter-symmetric metric connection on a Lorentzian α-Sasakian manifold. New Trends in Mathematical Sciences, 5(2), 69-79.
AMA Venkatesha V, G. D. Quarter-symmetric metric connection on a Lorentzian α-Sasakian manifold. New Trends in Mathematical Sciences. March 2017;5(2):69-79.
Chicago Venkatesha, Venkatesha, and Divyashree G. “Quarter-Symmetric Metric Connection on a Lorentzian α-Sasakian Manifold”. New Trends in Mathematical Sciences 5, no. 2 (March 2017): 69-79.
EndNote Venkatesha V, G. D (March 1, 2017) Quarter-symmetric metric connection on a Lorentzian α-Sasakian manifold. New Trends in Mathematical Sciences 5 2 69–79.
IEEE V. Venkatesha and D. G., “Quarter-symmetric metric connection on a Lorentzian α-Sasakian manifold”, New Trends in Mathematical Sciences, vol. 5, no. 2, pp. 69–79, 2017.
ISNAD Venkatesha, Venkatesha - G., Divyashree. “Quarter-Symmetric Metric Connection on a Lorentzian α-Sasakian Manifold”. New Trends in Mathematical Sciences 5/2 (March 2017), 69-79.
JAMA Venkatesha V, G. D. Quarter-symmetric metric connection on a Lorentzian α-Sasakian manifold. New Trends in Mathematical Sciences. 2017;5:69–79.
MLA Venkatesha, Venkatesha and Divyashree G. “Quarter-Symmetric Metric Connection on a Lorentzian α-Sasakian Manifold”. New Trends in Mathematical Sciences, vol. 5, no. 2, 2017, pp. 69-79.
Vancouver Venkatesha V, G. D. Quarter-symmetric metric connection on a Lorentzian α-Sasakian manifold. New Trends in Mathematical Sciences. 2017;5(2):69-7.