Research Article
BibTex RIS Cite

A note on the dimension of isometry group of a Riemannian manifold

Year 2017, Volume: 5 Issue: 2, 273 - 276, 30.03.2017

Abstract

In this paper, we obtain some results on the dimension of the isometry group of a Riemannian manifold. In specific dimensions, we give a range which the dimension of an isometry group can not be in. We also give necessary conditions for a manifold to have a free canonical action on some specific manifolds. We give a boundary of the dimension of the full isometry group if the dimension of a manifold is greater or equal to 4.

References

  • Alexandrino, Marcos M., Bettiol, Renato G. Lie Groups and Geometric Aspects of Isometric Actions ,Springer International Publishing Switzerland, (2015).
  • Fox, Ralph H., On topologies for function spaces, Bull. Amer. Math. Soc., 51 , 429-432, (1945).
  • Ihrig, Edwin., The Size of Isometry Groups on Metric Spaces, J. Mathematical Analysis and Applications, 96, 447-453, (1983).
  • Kadioglu H., Fisher R., Metric Structures on Fibered Manifolds Through Partitions of Unity, New Trends in Mathematical Sciences, 4(2), 266-272, (2016).
  • Kadioglu H., Prolongations of Isometric Actions to Vector Bundles, Under Review, (2016).
  • Kobayashi, S., Transformation groups in differential geometry, Ergeb. der Math. and ihrer Grenzgeb., (70,) Springer, Berlin (1972).
  • Myers S. B. and Steenrod N.E., The Group of Isometries of a Riemannian Manifold, The Annals of Mathematics, 40, 2, 400-416, (1939).
  • Mann, L. N., Gaps in Dimensions of Isometry Groups of Riemannian Manifolds, J. Differential Geometry, 11, 293-298, (1976).
  • Postnikov, M. M., Geometry VI: Riemannian Geometry, Springer Science and Business Media, (2001).
  • Wakakuwa, H., On n-dimensional Riemannian Spaces admitting some groups of Motions of order less than n(n-1)/2, Tohoku Math. J., 2(6), 121-134, (1954).
  • Wang, H. C., Finsler Spaces with Completely Integrable Equations of Killing, J. London Math Soc., 22, 5-9, (1947).
Year 2017, Volume: 5 Issue: 2, 273 - 276, 30.03.2017

Abstract

References

  • Alexandrino, Marcos M., Bettiol, Renato G. Lie Groups and Geometric Aspects of Isometric Actions ,Springer International Publishing Switzerland, (2015).
  • Fox, Ralph H., On topologies for function spaces, Bull. Amer. Math. Soc., 51 , 429-432, (1945).
  • Ihrig, Edwin., The Size of Isometry Groups on Metric Spaces, J. Mathematical Analysis and Applications, 96, 447-453, (1983).
  • Kadioglu H., Fisher R., Metric Structures on Fibered Manifolds Through Partitions of Unity, New Trends in Mathematical Sciences, 4(2), 266-272, (2016).
  • Kadioglu H., Prolongations of Isometric Actions to Vector Bundles, Under Review, (2016).
  • Kobayashi, S., Transformation groups in differential geometry, Ergeb. der Math. and ihrer Grenzgeb., (70,) Springer, Berlin (1972).
  • Myers S. B. and Steenrod N.E., The Group of Isometries of a Riemannian Manifold, The Annals of Mathematics, 40, 2, 400-416, (1939).
  • Mann, L. N., Gaps in Dimensions of Isometry Groups of Riemannian Manifolds, J. Differential Geometry, 11, 293-298, (1976).
  • Postnikov, M. M., Geometry VI: Riemannian Geometry, Springer Science and Business Media, (2001).
  • Wakakuwa, H., On n-dimensional Riemannian Spaces admitting some groups of Motions of order less than n(n-1)/2, Tohoku Math. J., 2(6), 121-134, (1954).
  • Wang, H. C., Finsler Spaces with Completely Integrable Equations of Killing, J. London Math Soc., 22, 5-9, (1947).
There are 11 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Hulya Kadioglu

Publication Date March 30, 2017
Published in Issue Year 2017 Volume: 5 Issue: 2

Cite

APA Kadioglu, H. (2017). A note on the dimension of isometry group of a Riemannian manifold. New Trends in Mathematical Sciences, 5(2), 273-276.
AMA Kadioglu H. A note on the dimension of isometry group of a Riemannian manifold. New Trends in Mathematical Sciences. March 2017;5(2):273-276.
Chicago Kadioglu, Hulya. “A Note on the Dimension of Isometry Group of a Riemannian Manifold”. New Trends in Mathematical Sciences 5, no. 2 (March 2017): 273-76.
EndNote Kadioglu H (March 1, 2017) A note on the dimension of isometry group of a Riemannian manifold. New Trends in Mathematical Sciences 5 2 273–276.
IEEE H. Kadioglu, “A note on the dimension of isometry group of a Riemannian manifold”, New Trends in Mathematical Sciences, vol. 5, no. 2, pp. 273–276, 2017.
ISNAD Kadioglu, Hulya. “A Note on the Dimension of Isometry Group of a Riemannian Manifold”. New Trends in Mathematical Sciences 5/2 (March 2017), 273-276.
JAMA Kadioglu H. A note on the dimension of isometry group of a Riemannian manifold. New Trends in Mathematical Sciences. 2017;5:273–276.
MLA Kadioglu, Hulya. “A Note on the Dimension of Isometry Group of a Riemannian Manifold”. New Trends in Mathematical Sciences, vol. 5, no. 2, 2017, pp. 273-6.
Vancouver Kadioglu H. A note on the dimension of isometry group of a Riemannian manifold. New Trends in Mathematical Sciences. 2017;5(2):273-6.