Research Article
BibTex RIS Cite

Product of statistical manifolds with a non-diagonal metric

Year 2017, Volume: 5 Issue: 3, 308 - 321, 01.07.2017

Abstract


References

  • Amari, S., Differential-geometrical Methods in statistics, Lecture Notes in statistics, 28, Springer, Berlin, 1985.55.
  • S. Amari, H. Nagaoka, Methods of information geometry, Amer. Math.Soc., Providence; Oxford University Press, Oxford, 2000.
  • J. K. Beem, P. E. Ehrlich and Th. G. Powell, Warped product manifolds in relativity, Selected Studies: Physics-astrophysics, mathematics, history of science, pp. 41-56, North-Holland, Amesterdam-New York, 1982.
  • R. L. Bishop and B. O’Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc., 145 (1969), 1-49.
  • Furuhata, H., Hypersurfaces in statistical manifolds, Diff. Geom. Appl., 27, 2009, 420-429.55.
  • R. Nasri, Non-diagonal metric on a product riemannian manifold, arXiv: 1501.00308, 2015.
  • R. Nasri and M. Djaa, Sur la courbure des variétés riemanniennes produits, Sciences et Technologie, A-24 (2006), 15-20.
  • B. O’Neill, Semi-Riemannian geometry, Academic Press, New-York, 1983.
  • Todjihounde, L., Dualistic structures on warped product manifolds, Diff. Geom.-Dyn. Syst. 8, (2006), 278-284.
Year 2017, Volume: 5 Issue: 3, 308 - 321, 01.07.2017

Abstract

References

  • Amari, S., Differential-geometrical Methods in statistics, Lecture Notes in statistics, 28, Springer, Berlin, 1985.55.
  • S. Amari, H. Nagaoka, Methods of information geometry, Amer. Math.Soc., Providence; Oxford University Press, Oxford, 2000.
  • J. K. Beem, P. E. Ehrlich and Th. G. Powell, Warped product manifolds in relativity, Selected Studies: Physics-astrophysics, mathematics, history of science, pp. 41-56, North-Holland, Amesterdam-New York, 1982.
  • R. L. Bishop and B. O’Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc., 145 (1969), 1-49.
  • Furuhata, H., Hypersurfaces in statistical manifolds, Diff. Geom. Appl., 27, 2009, 420-429.55.
  • R. Nasri, Non-diagonal metric on a product riemannian manifold, arXiv: 1501.00308, 2015.
  • R. Nasri and M. Djaa, Sur la courbure des variétés riemanniennes produits, Sciences et Technologie, A-24 (2006), 15-20.
  • B. O’Neill, Semi-Riemannian geometry, Academic Press, New-York, 1983.
  • Todjihounde, L., Dualistic structures on warped product manifolds, Diff. Geom.-Dyn. Syst. 8, (2006), 278-284.
There are 9 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Djelloul Djebbouri This is me

Seddik Ouakkas This is me

Publication Date July 1, 2017
Published in Issue Year 2017 Volume: 5 Issue: 3

Cite

APA Djebbouri, D., & Ouakkas, S. (2017). Product of statistical manifolds with a non-diagonal metric. New Trends in Mathematical Sciences, 5(3), 308-321.
AMA Djebbouri D, Ouakkas S. Product of statistical manifolds with a non-diagonal metric. New Trends in Mathematical Sciences. July 2017;5(3):308-321.
Chicago Djebbouri, Djelloul, and Seddik Ouakkas. “Product of Statistical Manifolds With a Non-Diagonal Metric”. New Trends in Mathematical Sciences 5, no. 3 (July 2017): 308-21.
EndNote Djebbouri D, Ouakkas S (July 1, 2017) Product of statistical manifolds with a non-diagonal metric. New Trends in Mathematical Sciences 5 3 308–321.
IEEE D. Djebbouri and S. Ouakkas, “Product of statistical manifolds with a non-diagonal metric”, New Trends in Mathematical Sciences, vol. 5, no. 3, pp. 308–321, 2017.
ISNAD Djebbouri, Djelloul - Ouakkas, Seddik. “Product of Statistical Manifolds With a Non-Diagonal Metric”. New Trends in Mathematical Sciences 5/3 (July 2017), 308-321.
JAMA Djebbouri D, Ouakkas S. Product of statistical manifolds with a non-diagonal metric. New Trends in Mathematical Sciences. 2017;5:308–321.
MLA Djebbouri, Djelloul and Seddik Ouakkas. “Product of Statistical Manifolds With a Non-Diagonal Metric”. New Trends in Mathematical Sciences, vol. 5, no. 3, 2017, pp. 308-21.
Vancouver Djebbouri D, Ouakkas S. Product of statistical manifolds with a non-diagonal metric. New Trends in Mathematical Sciences. 2017;5(3):308-21.