Research Article
BibTex RIS Cite

Multiplicative Newton’s Methods with Cubic Convergence

Year 2017, Volume: 5 Issue: 3, 299 - 307, 01.07.2017

Abstract

In this paper, we develop some modifications of the multiplicative Newton method which are third-order convergence. We use the multiplicative Newton Theorem and Newton Cotes quadrature formulas to present these new modifications of the multiplicative Newton method. Using the multiplicative Taylor expansion, we give also the convergence analysis of these new methods. Furthermore, we compare the multiplicative Newton methods with the classical Newton methods in details.

References

  • W. Gander, On Halleyiteration method, Amer. Math. Monthly, 92:131-134, 1985.
  • A. Ralston, P. Rabinowitz, A First Course in Numerical Analysis, McGraw-Hill, 1983.
  • A. S. Householder, The Numerical treatment of a single nonlinear equation, McGraw-Hill, New York,1970.
  • J. A. Ezquerro, M. A. Hernandez, On a convex acceleration of Newton method, J. Optim. Theory Appl.100: 311-326, 1999.
  • J. M. Gutierrez, M. A. Hernandez, A family of Chebyshev-Halley type methods in Banach spaces, Bull. Austral. Math. Soc. 55:113-130, 1997.
  • S. Weerakoon, T.G.I. Fernando, A variant of Newton method with accelerated third order convergence, Appl. Math. Lett.13: 87-93,2000.
  • A. Y. Ozban, Some new variants of Newton method, Applied Mathematics Letters 17(6): 677-682, 2004.
  • T. Lukic and N. M. Ralevic, Newton method with accelerated convergence modified by an aggregation operatör, Proceedings of 3rd Serbian-Hungarian Joint Symposium on Intelligent Systems, SCG, Subotica,2005.
  • J. Kou, Y. Li and X. Wang, A modification of Newton method with third-order convergence, Applied Mathematics and Computation, 181(2):1106-1111, 2006.
  • V. I. Hasanov, I. G. Ivanov, G. Nedzhibov, A new modification of Newton method, Appl. Math. Eng. 27: 278-286, 2002.
  • G. Nedzhibov, On a few iterative methods for solving nonlinear equations, Application of Mathematics in Engineering and Economics 28, in: Proceedings of the XXVIII Summer School Sozopol 2002, Heron Press, Sofia, 2002.
  • H. H. H. Homeier, On Newton-type methods with cubic convergence, Journal of computational and applied mathematics 176(2): 425-432, 2005.
  • M. Frontini and E. Sormani, Some variant of Newton method with third-order convergence, Applied Mathematics and Computation 140(2): 419-426, 2003.
  • M. Frontini and E. Sormani, Modified Newton method with third-order convergence and multiple roots, Journal of computational and applied mathematics 156(2): 345-354, 2003.
  • H. H. H. Homeier, A modified Newton method with cubic convergence: the multivariate case, Journal of Computational and Applied Mathematics 169(1): 161-169, 2004.
  • A. Cordero and J. R. Torregrosa, Variants of Newton method for functions of several variables, Applied Mathematics and Computation 183(1): 199-208, 2006.
  • A. Ozyapici, M. Riza, B. Bilgehan and A.E. Bashirov, On multiplicative and Volterra minimization methods, Numerical Algorithms 67(3): 623-636,2014.
  • A. Ozyapici, Z. B. Sensoy and T. Karanfiller, Effective Root-Finding Methods for Nonlinear Equations Based on Multiplicative Calculi. Journal of Mathematics, 2016.
  • A.E. Bashirov, E.M. Kurpinar and A. Ozyapici, Multiplicative calculus and its applications, Journal of Mathematical Analysis and Applications 337(1):36-48, 2008.
  • R. Wait, The numerical solution of algebraic equations, John Wiley & Sons, 1979.
  • W. Gautschi, Numerical Analysis: An Introduction, Birkhauser, 1997.
Year 2017, Volume: 5 Issue: 3, 299 - 307, 01.07.2017

Abstract

References

  • W. Gander, On Halleyiteration method, Amer. Math. Monthly, 92:131-134, 1985.
  • A. Ralston, P. Rabinowitz, A First Course in Numerical Analysis, McGraw-Hill, 1983.
  • A. S. Householder, The Numerical treatment of a single nonlinear equation, McGraw-Hill, New York,1970.
  • J. A. Ezquerro, M. A. Hernandez, On a convex acceleration of Newton method, J. Optim. Theory Appl.100: 311-326, 1999.
  • J. M. Gutierrez, M. A. Hernandez, A family of Chebyshev-Halley type methods in Banach spaces, Bull. Austral. Math. Soc. 55:113-130, 1997.
  • S. Weerakoon, T.G.I. Fernando, A variant of Newton method with accelerated third order convergence, Appl. Math. Lett.13: 87-93,2000.
  • A. Y. Ozban, Some new variants of Newton method, Applied Mathematics Letters 17(6): 677-682, 2004.
  • T. Lukic and N. M. Ralevic, Newton method with accelerated convergence modified by an aggregation operatör, Proceedings of 3rd Serbian-Hungarian Joint Symposium on Intelligent Systems, SCG, Subotica,2005.
  • J. Kou, Y. Li and X. Wang, A modification of Newton method with third-order convergence, Applied Mathematics and Computation, 181(2):1106-1111, 2006.
  • V. I. Hasanov, I. G. Ivanov, G. Nedzhibov, A new modification of Newton method, Appl. Math. Eng. 27: 278-286, 2002.
  • G. Nedzhibov, On a few iterative methods for solving nonlinear equations, Application of Mathematics in Engineering and Economics 28, in: Proceedings of the XXVIII Summer School Sozopol 2002, Heron Press, Sofia, 2002.
  • H. H. H. Homeier, On Newton-type methods with cubic convergence, Journal of computational and applied mathematics 176(2): 425-432, 2005.
  • M. Frontini and E. Sormani, Some variant of Newton method with third-order convergence, Applied Mathematics and Computation 140(2): 419-426, 2003.
  • M. Frontini and E. Sormani, Modified Newton method with third-order convergence and multiple roots, Journal of computational and applied mathematics 156(2): 345-354, 2003.
  • H. H. H. Homeier, A modified Newton method with cubic convergence: the multivariate case, Journal of Computational and Applied Mathematics 169(1): 161-169, 2004.
  • A. Cordero and J. R. Torregrosa, Variants of Newton method for functions of several variables, Applied Mathematics and Computation 183(1): 199-208, 2006.
  • A. Ozyapici, M. Riza, B. Bilgehan and A.E. Bashirov, On multiplicative and Volterra minimization methods, Numerical Algorithms 67(3): 623-636,2014.
  • A. Ozyapici, Z. B. Sensoy and T. Karanfiller, Effective Root-Finding Methods for Nonlinear Equations Based on Multiplicative Calculi. Journal of Mathematics, 2016.
  • A.E. Bashirov, E.M. Kurpinar and A. Ozyapici, Multiplicative calculus and its applications, Journal of Mathematical Analysis and Applications 337(1):36-48, 2008.
  • R. Wait, The numerical solution of algebraic equations, John Wiley & Sons, 1979.
  • W. Gautschi, Numerical Analysis: An Introduction, Birkhauser, 1997.
There are 21 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Emrah Unal This is me

İshak Cumhur This is me

Ahmet Gokdogan This is me

Publication Date July 1, 2017
Published in Issue Year 2017 Volume: 5 Issue: 3

Cite

APA Unal, E., Cumhur, İ., & Gokdogan, A. (2017). Multiplicative Newton’s Methods with Cubic Convergence. New Trends in Mathematical Sciences, 5(3), 299-307.
AMA Unal E, Cumhur İ, Gokdogan A. Multiplicative Newton’s Methods with Cubic Convergence. New Trends in Mathematical Sciences. July 2017;5(3):299-307.
Chicago Unal, Emrah, İshak Cumhur, and Ahmet Gokdogan. “Multiplicative Newton’s Methods With Cubic Convergence”. New Trends in Mathematical Sciences 5, no. 3 (July 2017): 299-307.
EndNote Unal E, Cumhur İ, Gokdogan A (July 1, 2017) Multiplicative Newton’s Methods with Cubic Convergence. New Trends in Mathematical Sciences 5 3 299–307.
IEEE E. Unal, İ. Cumhur, and A. Gokdogan, “Multiplicative Newton’s Methods with Cubic Convergence”, New Trends in Mathematical Sciences, vol. 5, no. 3, pp. 299–307, 2017.
ISNAD Unal, Emrah et al. “Multiplicative Newton’s Methods With Cubic Convergence”. New Trends in Mathematical Sciences 5/3 (July 2017), 299-307.
JAMA Unal E, Cumhur İ, Gokdogan A. Multiplicative Newton’s Methods with Cubic Convergence. New Trends in Mathematical Sciences. 2017;5:299–307.
MLA Unal, Emrah et al. “Multiplicative Newton’s Methods With Cubic Convergence”. New Trends in Mathematical Sciences, vol. 5, no. 3, 2017, pp. 299-07.
Vancouver Unal E, Cumhur İ, Gokdogan A. Multiplicative Newton’s Methods with Cubic Convergence. New Trends in Mathematical Sciences. 2017;5(3):299-307.