Research Article
BibTex RIS Cite

Numerical solutions of the Fredholm integral equations of the second type

Year 2017, Volume: 5 Issue: 3, 284 - 292, 01.07.2017

Abstract

We present in this paper, Bernstein Piecewise Polynomials Method(BPPM), Integral Mean Value Method(IMVM), Taylor Series Method(TSM),The Least Square Method(LSM) are used to solve the integral equations of the second kind numerically. We aim to compare the efficiency of BPPM, IMVM, TSM and LSM in solving the integral equations of the second kind. We solve some examples to illustrate the applicability and simplicity of the methods. The numerical results show that which method is more efficient and accurate. As all these 4 methods consider solutions in numerically it is important to know about their rapidity of convergence to the exact solution.

References

  • Abdul J. Jerri, Introduction to Integral Equations with Applications (John Wiley Sons Inc. 1999).
  • Shanti Swarup, Integral Equations, Krishna Prakashan Media (P) Ltd (15th Edition, 2007). P. E. Lewis and J. P. Ward, The Finite Element Method, Principles and Applications (Addison-Wesley, 1991).
  • J. Reinkenhof, Int. J. Numer. Methods Engrg. 11, 1627 (1986).
  • E. Kreyszig, Int. J. Numer. Methods Engrg. 14, 292 (1979).
  • B. N. Mandal and S. Bhattacharya, Appl. Math.Comput. 190, 1707 (2007).
  • M.I. Bhatti and P. Bracken, J. Comput. Appl. Math. 205, 272 (2007).
  • X.Z. Liang, M.C. Liu, X.J. Che, Solving second kind integral equations by Galerkin methods with continuous orthogonal wavelets, J. Comput. Appl. Math. 136 (2001) 149-161.
  • K. Maleknejad, M. Tavassoli Kajani, Solving second kind integral equations by Galerkin methods with hybrid Legendre and Block-Pulse functions, Appl. Math. Comput. 145 (2003) 623-629.
  • K. Maleknejad, N. Aghazadeh, R. Mollapourasl, Numerical solution of Fredholm integral equation of the first kind with collocation method and estimation of error bound, Appl. Math. Comput. 179 (2006) 352-359.
  • J. Rashidinia, M. Zarebnia, Numerical solution of linear integral equations by using Sinc-collocation method, Appl. Math. Comput. 168 (2005) 806-822.
  • A. Arikoglu, I. Ozkol, Solutions of integral and integro-differential equation systems by using differential transform method, Comput. Math. Appl. 56 (2008) 2411-2417.
  • R. Piessens, Computing integral transforms and solving integral equations using Chebyshev polynomial approximations, J. Comput. Appl. Math. 121 (2000) 113-124.
  • P. Br uer, M. Fassler, M. Jaroniec, Numerical solutions of the adsorption integral equation utilizing the spline functions, Thin Solid Films 123 (1985) 245-272.
  • M. Inoue, M. Kuroumaru, S. Yamaguchi, A solution of Fredholm integral equation by means of the spline fit approximation, Comput. Fluids 7 (1979) 33-46.
  • K. Maleknejad, H. Derili, Numerical solution of Hammerstein integral equations by using combination of spline-collocation method and Lagrange interpolation, Appl. Math. Comput. 190 (2007) 1557-1562.
  • L. Pretorius, D. Eyre, Spline-Gauss rules and the Nystrm method for solving integral equations in quantum scattering, J. Comput. Appl. Math. 18(1987) 235-247.
  • Y. Ren, Bo Zhang, Hong Qiao A simple Taylor-series expansion method for a class of second kind integral equations J. Comput. Appl. Math, 110 (1999), pp. 15-24.
  • L. Fox,E. T. Goodwin, "The numerical solution of non-singular linear integral equations," Philos. Trans. Roy. Soc. London Ser. A, v. 245, 1953, pp. 501-534. MR 14, 908.
Year 2017, Volume: 5 Issue: 3, 284 - 292, 01.07.2017

Abstract

References

  • Abdul J. Jerri, Introduction to Integral Equations with Applications (John Wiley Sons Inc. 1999).
  • Shanti Swarup, Integral Equations, Krishna Prakashan Media (P) Ltd (15th Edition, 2007). P. E. Lewis and J. P. Ward, The Finite Element Method, Principles and Applications (Addison-Wesley, 1991).
  • J. Reinkenhof, Int. J. Numer. Methods Engrg. 11, 1627 (1986).
  • E. Kreyszig, Int. J. Numer. Methods Engrg. 14, 292 (1979).
  • B. N. Mandal and S. Bhattacharya, Appl. Math.Comput. 190, 1707 (2007).
  • M.I. Bhatti and P. Bracken, J. Comput. Appl. Math. 205, 272 (2007).
  • X.Z. Liang, M.C. Liu, X.J. Che, Solving second kind integral equations by Galerkin methods with continuous orthogonal wavelets, J. Comput. Appl. Math. 136 (2001) 149-161.
  • K. Maleknejad, M. Tavassoli Kajani, Solving second kind integral equations by Galerkin methods with hybrid Legendre and Block-Pulse functions, Appl. Math. Comput. 145 (2003) 623-629.
  • K. Maleknejad, N. Aghazadeh, R. Mollapourasl, Numerical solution of Fredholm integral equation of the first kind with collocation method and estimation of error bound, Appl. Math. Comput. 179 (2006) 352-359.
  • J. Rashidinia, M. Zarebnia, Numerical solution of linear integral equations by using Sinc-collocation method, Appl. Math. Comput. 168 (2005) 806-822.
  • A. Arikoglu, I. Ozkol, Solutions of integral and integro-differential equation systems by using differential transform method, Comput. Math. Appl. 56 (2008) 2411-2417.
  • R. Piessens, Computing integral transforms and solving integral equations using Chebyshev polynomial approximations, J. Comput. Appl. Math. 121 (2000) 113-124.
  • P. Br uer, M. Fassler, M. Jaroniec, Numerical solutions of the adsorption integral equation utilizing the spline functions, Thin Solid Films 123 (1985) 245-272.
  • M. Inoue, M. Kuroumaru, S. Yamaguchi, A solution of Fredholm integral equation by means of the spline fit approximation, Comput. Fluids 7 (1979) 33-46.
  • K. Maleknejad, H. Derili, Numerical solution of Hammerstein integral equations by using combination of spline-collocation method and Lagrange interpolation, Appl. Math. Comput. 190 (2007) 1557-1562.
  • L. Pretorius, D. Eyre, Spline-Gauss rules and the Nystrm method for solving integral equations in quantum scattering, J. Comput. Appl. Math. 18(1987) 235-247.
  • Y. Ren, Bo Zhang, Hong Qiao A simple Taylor-series expansion method for a class of second kind integral equations J. Comput. Appl. Math, 110 (1999), pp. 15-24.
  • L. Fox,E. T. Goodwin, "The numerical solution of non-singular linear integral equations," Philos. Trans. Roy. Soc. London Ser. A, v. 245, 1953, pp. 501-534. MR 14, 908.
There are 18 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Bulent Yilmaz This is me

Yasin Cetin This is me

Publication Date July 1, 2017
Published in Issue Year 2017 Volume: 5 Issue: 3

Cite

APA Yilmaz, B., & Cetin, Y. (2017). Numerical solutions of the Fredholm integral equations of the second type. New Trends in Mathematical Sciences, 5(3), 284-292.
AMA Yilmaz B, Cetin Y. Numerical solutions of the Fredholm integral equations of the second type. New Trends in Mathematical Sciences. July 2017;5(3):284-292.
Chicago Yilmaz, Bulent, and Yasin Cetin. “Numerical Solutions of the Fredholm Integral Equations of the Second Type”. New Trends in Mathematical Sciences 5, no. 3 (July 2017): 284-92.
EndNote Yilmaz B, Cetin Y (July 1, 2017) Numerical solutions of the Fredholm integral equations of the second type. New Trends in Mathematical Sciences 5 3 284–292.
IEEE B. Yilmaz and Y. Cetin, “Numerical solutions of the Fredholm integral equations of the second type”, New Trends in Mathematical Sciences, vol. 5, no. 3, pp. 284–292, 2017.
ISNAD Yilmaz, Bulent - Cetin, Yasin. “Numerical Solutions of the Fredholm Integral Equations of the Second Type”. New Trends in Mathematical Sciences 5/3 (July 2017), 284-292.
JAMA Yilmaz B, Cetin Y. Numerical solutions of the Fredholm integral equations of the second type. New Trends in Mathematical Sciences. 2017;5:284–292.
MLA Yilmaz, Bulent and Yasin Cetin. “Numerical Solutions of the Fredholm Integral Equations of the Second Type”. New Trends in Mathematical Sciences, vol. 5, no. 3, 2017, pp. 284-92.
Vancouver Yilmaz B, Cetin Y. Numerical solutions of the Fredholm integral equations of the second type. New Trends in Mathematical Sciences. 2017;5(3):284-92.