Research Article
BibTex RIS Cite
Year 2022, , 61 - 69, 16.09.2022
https://doi.org/10.56766/ntms.1147628

Abstract

References

  • Referans 1 Abdelnour, S. A., Abd El-Hack, M. E., Swelum, A. A., Perillo, A., & Losacco, C. (2018). The vital roles of boron in animal health and production: A comprehensive review. In Journal of Trace Elements in Medicine and Biology (Vol. 50). https://doi.org/10.1016/j.jtemb.2018.07.018
  • Referans 2 Acerbo, A. S., & Miller, L. M. (2009). Assessment of the chemical changes induced in human melanoma cells by boric acid treatment using infrared imaging. Analyst, 134(8). https://doi.org/10.1039/b823234b
  • Referans 3 Appelmann, I., Liersch, R., Kessler, T., Mesters, R. M., & Berdel, W. E. (2010). Angiogenesis inhibition in cancer therapy: Platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) and their receptors: Biological functions and role in malignancy. In Recent Results in Cancer Research (Vol. 180). https://doi.org/10.1007/978-3-540-78281-0_5
  • Referans 4 Barranco, W. T., & Eckhert, C. D. (2006). Cellular changes in boric acid-treated DU-145 prostate cancer cells. British Journal of Cancer, 94(6). https://doi.org/10.1038/sj.bjc.6603009
  • Referans 5 Başaran, N., Duydu, Y., & Bolt, H. M. (2012). Reproductive toxicity in boron exposed workers in Bandirma, Turkey. Journal of Trace Elements in Medicine and Biology, 26(2–3). https://doi.org/10.1016/j.jtemb.2012.04.013
  • Referans 6 Bradke, T. M., Hall, C., Carper, S. W., & Plopper, G. E. (2008). Phenylboronic acid selectively inhibits human prostate and breast cancer cell migration and decreases viability. Cell Adhesion & Migration, 2(3), 153–160. https://doi.org/10.4161/cam.2.3.6484
  • Referans 7 Brown, L. F., Berse, B., Jackman, R. W., Tognazzi, K., Guidi, A. J., Dvorak, H. F., Senger, D. R., Connolly, J. L., & Schnitt, S. J. (1995). Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer. Human Pathology, 26(1). https://doi.org/10.1016/0046-8177(95)90119-1
  • Referans 8 Brown, L. F., Berse, B., Jackman, R. W., Tognazzi, K., Manseau, E. J., Senger, D. R., & Dvorak, H. F. (1993). Expression of Vascular Permeability Factor (Vascular Endothelial Growth Factor) and Its Receptors in Adenocarcinomas of the Gastrointestinal Tract. Cancer Research, 53(19).
  • Referans 9 Chebassier, N., El Houssein, O., Viegas, I., & Dreno, B. (2004). In vitro induction of matrix metalloproteinase-2 and matrix metalloproteinase-9 expression in keratinocytes by boron and manganese. Experimental Dermatology, 13(8), 484–490. https://doi.org/10.1111/j.0906-6705.2004.00197.x
  • Referans 10 Chen, B., Zhang, W., Ji, B., Ma, Q., Li, D., & Gao, S. (2018). Integrin αVβ3-targeted SPECT/CT for the assessment of bevacizumab therapy in orthotopic lung cancer xenografts. Oncology Letters, 15(4). https://doi.org/10.3892/ol.2018.7901
  • Referans 11 Cohen, G. M. (1997). Caspases: The executioners of apoptosis. In Biochemical Journal (Vol. 326, Issue 1). https://doi.org/10.1042/bj3260001
  • Referans 12 D’Agostino, R. B. (2011). Changing End Points in Breast-Cancer Drug Approval — The Avastin Story. New England Journal of Medicine, 365(2). https://doi.org/10.1056/nejmp1106984
  • Referans 13 Devirian, T. A., & Volpe, S. L. (2003). The Physiological Effects of Dietary Boron. Critical Reviews in Food Science and Nutrition, 43(2). https://doi.org/10.1080/10408690390826491
  • Referans 14 Elegbede, A. F. (2007). Boric acid inhibits cell growth and induces apoptosis in breast cancer cells. ProQuest Dissertations and Theses. Gobin, E., Bagwell, K., Wagner, J., Mysona, D., Sandirasegarane, S., Smith, N., Bai, S., Sharma, A., Schleifer, R., & She, J. X. (2019). A pan-cancer perspective of matrix metalloproteases (MMP) gene expression profile and their diagnostic/prognostic potential. BMC Cancer, 19(1). https://doi.org/10.1186/s12885-019-5768-0
  • Referans 15 Hacioglu, C., Kar, F., Kacar, S., Sahinturk, V., & Kanbak, G. (2020). High Concentrations of Boric Acid Trigger Concentration-Dependent Oxidative Stress, Apoptotic Pathways and Morphological Alterations in DU-145 Human Prostate Cancer Cell Line. Biological Trace Element Research, 193(2). https://doi.org/10.1007/s12011-019-01739-x
  • Referans 16 Hurwitz, H., Fehrenbacher, L., Novotny, W., Cartwright, T., Hainsworth, J., Heim, W., Berlin, J., Baron, A., Griffing, S., Holmgren, E., Ferrara, N., Fyfe, G., Rogers, B., Ross, R., & Kabbinavar, F. (2004). Bevacizumab plus Irinotecan, Fluorouracil, and Leucovorin for Metastatic Colorectal Cancer. New England Journal of Medicine, 350(23). https://doi.org/10.1056/nejmoa032691
  • Referans 17 Ishikura, N., Yanagisawa, M., Noguchi-Sasaki, M., Iwai, T., Yorozu, K., Kurasawa, M., Sugimoto, M., & Yamamoto, K. (2017). Importance of bevacizumab maintenance following combination chemotherapy in human non-small cell lung cancer xenograft models. Anticancer Research, 37(2). https://doi.org/10.21873/anticanres.11356
  • Referans 18 Jiang, X., Zhang, Q.-L., Liu, T.-G., Zhao, W.-P., Yang, M., Wang, L.-N., Sun, W.-L., Pan, L., Luo, A.-P., Huang, J.-C., & Gu, X.-H. (2019). Evaluation of Local Injection of Bevacizumab against Triple-Negative Breast Cancer Xenograft Tumors. Current Pharmaceutical Design, 25(8). https://doi.org/10.2174/1381612825666190306164157
  • Referans 19 Kamrava, M., Bernstein, M. B., Camphausen, K., & Hodge, J. W. (2009). Combining radiation, immunotherapy, and antiangiogenesis agents in the management of cancer: The Three Musketeers or just another quixotic combination? Molecular BioSystems, 5(11). https://doi.org/10.1039/b911313b
  • Referans 20 Karikas, G. A. (2010). Anticancer and chemopreventing natural products: Some biochemical and therapeutic aspects. In Journal of B.U.ON. (Vol. 15, Issue 4).
  • Referans 21 Kim, S., Kim, Y. J., Kim, N. R., & Chin, H. S. (2015). Effects of Bevacizumab on Bcl-2 Expression and Apoptosis in Retinal Pigment Epithelial Cells under Oxidative Stress. Korean Journal of Ophthalmology : KJO, 29(6). https://doi.org/10.3341/kjo.2015.29.6.424
  • Referans 22 Lee, D., Long, S. A., Adams, J. L., Chan, G., Vaidya, K. S., Francis, T. A., Kikly, K., Winkler, J. D., Sung, C. M., Debouck, C., Richardson, S., Levy, M. A., DeWolf, W. E., Keller, P. M., Tomaszek, T., Head, M. S., Ryan, M. D., Haltiwanger, R. C., Liang, P. H., … Nuttall, M. E. (2000). Potent and selective nonpeptide inhibitors of caspases 3 and 7 inhibit apoptosis and maintain cell functionality. Journal of Biological Chemistry, 275(21). https://doi.org/10.1074/jbc.275.21.16007
  • Referans 23 Li, X., Wang, X., Zhang, J., Hanagata, N., Wang, X., Weng, Q., Ito, A., Bando, Y., & Golberg, D. (2017). Hollow boron nitride nanospheres as boron reservoir for prostate cancer treatment. Nature Communications, 8. https://doi.org/10.1038/ncomms13936
  • Referans 24 Masuda, C., Sugimoto, M., Wakita, D., Monnai, M., Ishimaru, C., Nakamura, R., Kinoshita, M., Yorozu, K., Kurasawa, M., Kondoh, O., & Yamamoto, K. (2020). Bevacizumab suppresses the growth of established non-small-cell lung cancer brain metastases in a hematogenous brain metastasis model. Clinical and Experimental Metastasis, 37(1). https://doi.org/10.1007/s10585-019-10008-z
  • Referans 25 Mattern, J., Koomägi, R., & Volm, M. (1996). Association of vascular endothelial growth factor expression with intratumoral microvessel density and tumour cell proliferation in human epidermoid lung carcinoma. British Journal of Cancer, 73(7). https://doi.org/10.1038/bjc.1996.166
  • Referans 26 McAuley, E. M., Bradke, T. A., & Plopper, G. E. (2011). Phenylboronic acid is a more potent inhibitor than boric acid of key signaling networks involved in cancer cell migration. Cell Adhesion and Migration, 5(5), 382–386. https://doi.org/10.4161/cam.5.5.18162
  • Referans 27 Meacham, S. L., Elwell, K. E., Ziegler, S., & Carper, S. W. (2007). Boric Acid Inhibits Cell Growth in Breast and Prostate Cancer Cell Lines. In Advances in Plant and Animal Boron Nutrition. https://doi.org/10.1007/978-1-4020-5382-5_29
  • Referans 28 Moore, J. A. (1997). An assessment of boric acid and borax using the IEHR evaluative process for assessing human developmental and reproductive toxicity of agents. Reproductive Toxicology, 11(1). https://doi.org/10.1016/S0890-6238(96)00204-3
  • Referans 29 Mukae, N., Enari, M., Sakahira, H., Fukuda, Y., Inazawa, J., Toh, H., & Nagata, S. (1998). Molecular cloning and characterization of human caspase-activated DNase. Proceedings of the National Academy of Sciences of the United States of America, 95(16). https://doi.org/10.1073/pnas.95.16.9123
  • Referans 30 Nagathihalli, N. S., & Merchant, N. B. (2012). Src-mediated regulation of E-cadherin and EMT in pancreatic cancer. Frontiers in Bioscience, 17(6). https://doi.org/10.2741/4037
  • Referans 31 Numata, M., Cross, J. R., Hospital, H., Watanabe, T., & Yamamoto, N. (2012). The clinical significance of SWI / SNF complex in pancreatic cancer. November. https://doi.org/10.3892/ijo.2012.1723
  • Referans 32 Nuttall, M. E., Nadeau, D. P., Fisher, P. W., Wang, F., Keller, P. M., Dewolf, W. E., Goldring, M. B., Badger, A. M., Lee, D., Levy, M. A., Gowen, M., & Lark, M. W. (2000). Inhibition of caspase-3-like activity prevents apoptosis while retaining functionality of human chondrocytes in vitro. Journal of Orthopaedic Research, 18(3). https://doi.org/10.1002/jor.1100180306
  • Referans 33 O’Byrne, K. J., Koukourakis, M. I., Giatromanolaki, A., Cox, G., Turley, H., Steward, W. P., Gatter, K., & Harris, A. L. (2000). Vascular endothelial growth factor, platelet-derived endothelial cell growth factor and angiogenesis in non-small-cell lung cancer. British Journal of Cancer, 82(8). https://doi.org/10.1054/bjoc.1999.1129
  • Referans 34 Pei, K., Zhu, J. J., Wang, C. E., Xie, Q. L., & Guo, J. Y. (2016). MicroRNA-185-5p modulates chemosensitivity of human non-small cell lung cancer to cisplatin via targeting ABCC1. European Review for Medical and Pharmacological Sciences, 20(22).
  • Referans 35 Satelli, A., & Li, S. (2011). Vimentin in cancer and its potential as a molecular target for cancer therapy. In Cellular and Molecular Life Sciences (Vol. 68, Issue 18). https://doi.org/10.1007/s00018-011-0735-1
  • Referans 36 Scorei, R., Ciubar, R., Ciofrangeanu, C. M., Mitran, V., Cimpean, A., & Iordachescu, D. (2008). Comparative effects of boric acid and calcium fructoborate on breast cancer cells. Biological Trace Element Research, 122(3), 197–205. https://doi.org/10.1007/s12011-007-8081-8
  • Referans 37 Seto, T., Higashiyama, M., Funai, H., Imamura, F., Uematsu, K., Seki, N., Eguchi, K., Yamanaka, T., & Ichinose, Y. (2006). Prognostic value of expression of vascular endothelial growth factor and its flt-1 and KDR receptors in stage I non-small-cell lung cancer. Lung Cancer, 53(1). https://doi.org/10.1016/j.lungcan.2006.02.009
  • Referans 38 Spano, D., Heck, C., De Antonellis, P., Christofori, G., & Zollo, M. (2012). Molecular networks that regulate cancer metastasis. In Seminars in Cancer Biology (Vol. 22, Issue 3). https://doi.org/10.1016/j.semcancer.2012.03.006
  • Referans 39 Stetler-Stevenson, W. G., & Yu, A. E. (2001). Proteases in invasion: Matrix metalloproteinases. Seminars in Cancer Biology, 11(2). https://doi.org/10.1006/scbi.2000.0365
  • Referans 40 Stewart, B., & Wild, C. (2014). World Cancer Report 2014. International Agency for Research on Cancer, 22(1).
  • Referans 41 Tirino, V., Camerlingo, R., Bifulco, K., Irollo, E., Montella, R., Paino, F., Sessa, G., Carriero, M. V., Normanno, N., Rocco, G., & Pirozzi, G. (2013). TGF-β1 exposure induces epithelial to mesenchymal transition both in CSCs and non-CSCs of the A549 cell line, leading to an increase of migration ability in the CD133+ A549 cell fraction. Cell Death and Disease, 4(5). https://doi.org/10.1038/cddis.2013.144
  • Referans 42 Torre, L. A., Siegel, R. L., & Jemal, A. (2016). Lung cancer statistics. Advances in Experimental Medicine and Biology, 893. https://doi.org/10.1007/978-3-319-24223-1_1
  • Referans 43 Türkez, H., Geyikoǧlu, F., Tatar, A., Keleş, S., & Özkan, A. (2007). Effects of some boron compounds on peripheral human blood. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 62(11–12). https://doi.org/10.1515/znc-2007-11-1218
  • Referans 44 Wang D, Han Y, Zhu L, Deng L, Qu D, Cui F, X. Y. (2015). Effect of bevacizumab on proliferation and invasion of human lung cancer A549 cells. Article in Chinese, 37(8), 573.
  • Referans 45 Wang, D., Han, Y., Zhu, L., Deng, L., Qu, D., Cui, F., & Xu, Y. (2015). Effect of bevacizumab on proliferation and invasion of human lung cancer A549 cells. Zhonghua Zhong Liu Za Zhi [Chinese Journal of Oncology], 37(8).
  • Referans 46 Wang, L. Le, Hu, R. C., Dai, A. G., & Tan, S. X. (2015). Bevacizumab induces A549 cell apoptosis through the mechanism of endoplasmic reticulum stress in vitro. International Journal of Clinical and Experimental Pathology, 8(5).
  • Referans 47 World Health Organisation. (2020). Latest global cancer data: Cancer burden rises to 19.3 million new cases and 10.0 million cancer deaths in 2020. International Agency for Research on Cancer, december.
  • Referans 48 Yilmaz, S., Ustundag, A., Ulker, O. C., & Duydu, Y. (2016). Protective effect of boric acid on oxidative DNA damage in Chinese hamster lung fibroblast v79 cell lines. Cell Journal, 17(4).
  • Referans 49 Zafar, H., & Ali, S. (2013). Boron inhibits the proliferating cell nuclear antigen index, molybdenum containing proteins and ameliorates oxidative stress in hepatocellular carcinoma. Archives of Biochemistry and Biophysics, 529(2). https://doi.org/10.1016/j.abb.2012.11.008
  • Referans 50 Zhang, Q., Lu, S., Li, T., Yu, L., Zhang, Y., Zeng, H., Qian, X., Bi, J., & Lin, Y. (2019). ACE2 inhibits breast cancer angiogenesis via suppressing the VEGFa/VEGFR2/ERK pathway. Journal of Experimental and Clinical Cancer Research, 38(1). https://doi.org/10.1186/s13046-019-1156-5

In Vitro Effects of Boric Acid and Bevacizumab in Non-Small Cell Lung Cancer

Year 2022, , 61 - 69, 16.09.2022
https://doi.org/10.56766/ntms.1147628

Abstract

Lung cancer is one of the most common types of cancer worldwide and is responsible for the loss of more than 1 million people each year. It has been reported that the 5-year survival rate of lung cancer is approximately 15% or less due to cell metastasis (World Health Organisation, 2020). Therefore, there is a need to develop adjuvant therapies to prevent death from lung cancer cell metastasis. The aim of our study; The aim of this study is to evaluate the effects of boric acid and bevacizumab on the vascularization, apoptotic, and metastasis steps of A549 lung cancer cells, such as invasion, migration, and epithelial mesenchymal transition(EMT) abilities, either alone or in combination.
The study was divided into 4 groups as control(CONT) and boric acid(BA), Boric acid+altuzan(BA+ALT) and altuzan(ALT). The IC50 dose of boric acid was determined by the MTT method. 30μM boric acid and 7 μM Altuzan were applied to BA, BA+ALT and ALT groups for 24 hours. Anti-VEGF for vascularization, Anti-Vimentin for EMT, Anti-MMP-9 for invasion, and Anti-Bax, Anti-Bcl-2 and Anti-Caspase-3 antibodies for apoptosis were stained immunocytochemically and H-Score analysis was performed. . Cell migration was evaluated by the wound healing assay. It was observed that MMP-9 immunoreactivity and apoptotic markers increased in the direction of Cas-3 in the BA group, while the immunoreactivity of Vim and VEGF did not change significantly. When the migration was evaluated, it was observed that the cells did not migrate in the BA and BA+ALT groups at the end of the 24th hour, and the wound areas were closed in the other groups.
It was observed that while BA affected the migration, invasion and apoptotic characters of A549 cells independently of bevacizumab, it had no effect on their vascularization properties.

References

  • Referans 1 Abdelnour, S. A., Abd El-Hack, M. E., Swelum, A. A., Perillo, A., & Losacco, C. (2018). The vital roles of boron in animal health and production: A comprehensive review. In Journal of Trace Elements in Medicine and Biology (Vol. 50). https://doi.org/10.1016/j.jtemb.2018.07.018
  • Referans 2 Acerbo, A. S., & Miller, L. M. (2009). Assessment of the chemical changes induced in human melanoma cells by boric acid treatment using infrared imaging. Analyst, 134(8). https://doi.org/10.1039/b823234b
  • Referans 3 Appelmann, I., Liersch, R., Kessler, T., Mesters, R. M., & Berdel, W. E. (2010). Angiogenesis inhibition in cancer therapy: Platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) and their receptors: Biological functions and role in malignancy. In Recent Results in Cancer Research (Vol. 180). https://doi.org/10.1007/978-3-540-78281-0_5
  • Referans 4 Barranco, W. T., & Eckhert, C. D. (2006). Cellular changes in boric acid-treated DU-145 prostate cancer cells. British Journal of Cancer, 94(6). https://doi.org/10.1038/sj.bjc.6603009
  • Referans 5 Başaran, N., Duydu, Y., & Bolt, H. M. (2012). Reproductive toxicity in boron exposed workers in Bandirma, Turkey. Journal of Trace Elements in Medicine and Biology, 26(2–3). https://doi.org/10.1016/j.jtemb.2012.04.013
  • Referans 6 Bradke, T. M., Hall, C., Carper, S. W., & Plopper, G. E. (2008). Phenylboronic acid selectively inhibits human prostate and breast cancer cell migration and decreases viability. Cell Adhesion & Migration, 2(3), 153–160. https://doi.org/10.4161/cam.2.3.6484
  • Referans 7 Brown, L. F., Berse, B., Jackman, R. W., Tognazzi, K., Guidi, A. J., Dvorak, H. F., Senger, D. R., Connolly, J. L., & Schnitt, S. J. (1995). Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer. Human Pathology, 26(1). https://doi.org/10.1016/0046-8177(95)90119-1
  • Referans 8 Brown, L. F., Berse, B., Jackman, R. W., Tognazzi, K., Manseau, E. J., Senger, D. R., & Dvorak, H. F. (1993). Expression of Vascular Permeability Factor (Vascular Endothelial Growth Factor) and Its Receptors in Adenocarcinomas of the Gastrointestinal Tract. Cancer Research, 53(19).
  • Referans 9 Chebassier, N., El Houssein, O., Viegas, I., & Dreno, B. (2004). In vitro induction of matrix metalloproteinase-2 and matrix metalloproteinase-9 expression in keratinocytes by boron and manganese. Experimental Dermatology, 13(8), 484–490. https://doi.org/10.1111/j.0906-6705.2004.00197.x
  • Referans 10 Chen, B., Zhang, W., Ji, B., Ma, Q., Li, D., & Gao, S. (2018). Integrin αVβ3-targeted SPECT/CT for the assessment of bevacizumab therapy in orthotopic lung cancer xenografts. Oncology Letters, 15(4). https://doi.org/10.3892/ol.2018.7901
  • Referans 11 Cohen, G. M. (1997). Caspases: The executioners of apoptosis. In Biochemical Journal (Vol. 326, Issue 1). https://doi.org/10.1042/bj3260001
  • Referans 12 D’Agostino, R. B. (2011). Changing End Points in Breast-Cancer Drug Approval — The Avastin Story. New England Journal of Medicine, 365(2). https://doi.org/10.1056/nejmp1106984
  • Referans 13 Devirian, T. A., & Volpe, S. L. (2003). The Physiological Effects of Dietary Boron. Critical Reviews in Food Science and Nutrition, 43(2). https://doi.org/10.1080/10408690390826491
  • Referans 14 Elegbede, A. F. (2007). Boric acid inhibits cell growth and induces apoptosis in breast cancer cells. ProQuest Dissertations and Theses. Gobin, E., Bagwell, K., Wagner, J., Mysona, D., Sandirasegarane, S., Smith, N., Bai, S., Sharma, A., Schleifer, R., & She, J. X. (2019). A pan-cancer perspective of matrix metalloproteases (MMP) gene expression profile and their diagnostic/prognostic potential. BMC Cancer, 19(1). https://doi.org/10.1186/s12885-019-5768-0
  • Referans 15 Hacioglu, C., Kar, F., Kacar, S., Sahinturk, V., & Kanbak, G. (2020). High Concentrations of Boric Acid Trigger Concentration-Dependent Oxidative Stress, Apoptotic Pathways and Morphological Alterations in DU-145 Human Prostate Cancer Cell Line. Biological Trace Element Research, 193(2). https://doi.org/10.1007/s12011-019-01739-x
  • Referans 16 Hurwitz, H., Fehrenbacher, L., Novotny, W., Cartwright, T., Hainsworth, J., Heim, W., Berlin, J., Baron, A., Griffing, S., Holmgren, E., Ferrara, N., Fyfe, G., Rogers, B., Ross, R., & Kabbinavar, F. (2004). Bevacizumab plus Irinotecan, Fluorouracil, and Leucovorin for Metastatic Colorectal Cancer. New England Journal of Medicine, 350(23). https://doi.org/10.1056/nejmoa032691
  • Referans 17 Ishikura, N., Yanagisawa, M., Noguchi-Sasaki, M., Iwai, T., Yorozu, K., Kurasawa, M., Sugimoto, M., & Yamamoto, K. (2017). Importance of bevacizumab maintenance following combination chemotherapy in human non-small cell lung cancer xenograft models. Anticancer Research, 37(2). https://doi.org/10.21873/anticanres.11356
  • Referans 18 Jiang, X., Zhang, Q.-L., Liu, T.-G., Zhao, W.-P., Yang, M., Wang, L.-N., Sun, W.-L., Pan, L., Luo, A.-P., Huang, J.-C., & Gu, X.-H. (2019). Evaluation of Local Injection of Bevacizumab against Triple-Negative Breast Cancer Xenograft Tumors. Current Pharmaceutical Design, 25(8). https://doi.org/10.2174/1381612825666190306164157
  • Referans 19 Kamrava, M., Bernstein, M. B., Camphausen, K., & Hodge, J. W. (2009). Combining radiation, immunotherapy, and antiangiogenesis agents in the management of cancer: The Three Musketeers or just another quixotic combination? Molecular BioSystems, 5(11). https://doi.org/10.1039/b911313b
  • Referans 20 Karikas, G. A. (2010). Anticancer and chemopreventing natural products: Some biochemical and therapeutic aspects. In Journal of B.U.ON. (Vol. 15, Issue 4).
  • Referans 21 Kim, S., Kim, Y. J., Kim, N. R., & Chin, H. S. (2015). Effects of Bevacizumab on Bcl-2 Expression and Apoptosis in Retinal Pigment Epithelial Cells under Oxidative Stress. Korean Journal of Ophthalmology : KJO, 29(6). https://doi.org/10.3341/kjo.2015.29.6.424
  • Referans 22 Lee, D., Long, S. A., Adams, J. L., Chan, G., Vaidya, K. S., Francis, T. A., Kikly, K., Winkler, J. D., Sung, C. M., Debouck, C., Richardson, S., Levy, M. A., DeWolf, W. E., Keller, P. M., Tomaszek, T., Head, M. S., Ryan, M. D., Haltiwanger, R. C., Liang, P. H., … Nuttall, M. E. (2000). Potent and selective nonpeptide inhibitors of caspases 3 and 7 inhibit apoptosis and maintain cell functionality. Journal of Biological Chemistry, 275(21). https://doi.org/10.1074/jbc.275.21.16007
  • Referans 23 Li, X., Wang, X., Zhang, J., Hanagata, N., Wang, X., Weng, Q., Ito, A., Bando, Y., & Golberg, D. (2017). Hollow boron nitride nanospheres as boron reservoir for prostate cancer treatment. Nature Communications, 8. https://doi.org/10.1038/ncomms13936
  • Referans 24 Masuda, C., Sugimoto, M., Wakita, D., Monnai, M., Ishimaru, C., Nakamura, R., Kinoshita, M., Yorozu, K., Kurasawa, M., Kondoh, O., & Yamamoto, K. (2020). Bevacizumab suppresses the growth of established non-small-cell lung cancer brain metastases in a hematogenous brain metastasis model. Clinical and Experimental Metastasis, 37(1). https://doi.org/10.1007/s10585-019-10008-z
  • Referans 25 Mattern, J., Koomägi, R., & Volm, M. (1996). Association of vascular endothelial growth factor expression with intratumoral microvessel density and tumour cell proliferation in human epidermoid lung carcinoma. British Journal of Cancer, 73(7). https://doi.org/10.1038/bjc.1996.166
  • Referans 26 McAuley, E. M., Bradke, T. A., & Plopper, G. E. (2011). Phenylboronic acid is a more potent inhibitor than boric acid of key signaling networks involved in cancer cell migration. Cell Adhesion and Migration, 5(5), 382–386. https://doi.org/10.4161/cam.5.5.18162
  • Referans 27 Meacham, S. L., Elwell, K. E., Ziegler, S., & Carper, S. W. (2007). Boric Acid Inhibits Cell Growth in Breast and Prostate Cancer Cell Lines. In Advances in Plant and Animal Boron Nutrition. https://doi.org/10.1007/978-1-4020-5382-5_29
  • Referans 28 Moore, J. A. (1997). An assessment of boric acid and borax using the IEHR evaluative process for assessing human developmental and reproductive toxicity of agents. Reproductive Toxicology, 11(1). https://doi.org/10.1016/S0890-6238(96)00204-3
  • Referans 29 Mukae, N., Enari, M., Sakahira, H., Fukuda, Y., Inazawa, J., Toh, H., & Nagata, S. (1998). Molecular cloning and characterization of human caspase-activated DNase. Proceedings of the National Academy of Sciences of the United States of America, 95(16). https://doi.org/10.1073/pnas.95.16.9123
  • Referans 30 Nagathihalli, N. S., & Merchant, N. B. (2012). Src-mediated regulation of E-cadherin and EMT in pancreatic cancer. Frontiers in Bioscience, 17(6). https://doi.org/10.2741/4037
  • Referans 31 Numata, M., Cross, J. R., Hospital, H., Watanabe, T., & Yamamoto, N. (2012). The clinical significance of SWI / SNF complex in pancreatic cancer. November. https://doi.org/10.3892/ijo.2012.1723
  • Referans 32 Nuttall, M. E., Nadeau, D. P., Fisher, P. W., Wang, F., Keller, P. M., Dewolf, W. E., Goldring, M. B., Badger, A. M., Lee, D., Levy, M. A., Gowen, M., & Lark, M. W. (2000). Inhibition of caspase-3-like activity prevents apoptosis while retaining functionality of human chondrocytes in vitro. Journal of Orthopaedic Research, 18(3). https://doi.org/10.1002/jor.1100180306
  • Referans 33 O’Byrne, K. J., Koukourakis, M. I., Giatromanolaki, A., Cox, G., Turley, H., Steward, W. P., Gatter, K., & Harris, A. L. (2000). Vascular endothelial growth factor, platelet-derived endothelial cell growth factor and angiogenesis in non-small-cell lung cancer. British Journal of Cancer, 82(8). https://doi.org/10.1054/bjoc.1999.1129
  • Referans 34 Pei, K., Zhu, J. J., Wang, C. E., Xie, Q. L., & Guo, J. Y. (2016). MicroRNA-185-5p modulates chemosensitivity of human non-small cell lung cancer to cisplatin via targeting ABCC1. European Review for Medical and Pharmacological Sciences, 20(22).
  • Referans 35 Satelli, A., & Li, S. (2011). Vimentin in cancer and its potential as a molecular target for cancer therapy. In Cellular and Molecular Life Sciences (Vol. 68, Issue 18). https://doi.org/10.1007/s00018-011-0735-1
  • Referans 36 Scorei, R., Ciubar, R., Ciofrangeanu, C. M., Mitran, V., Cimpean, A., & Iordachescu, D. (2008). Comparative effects of boric acid and calcium fructoborate on breast cancer cells. Biological Trace Element Research, 122(3), 197–205. https://doi.org/10.1007/s12011-007-8081-8
  • Referans 37 Seto, T., Higashiyama, M., Funai, H., Imamura, F., Uematsu, K., Seki, N., Eguchi, K., Yamanaka, T., & Ichinose, Y. (2006). Prognostic value of expression of vascular endothelial growth factor and its flt-1 and KDR receptors in stage I non-small-cell lung cancer. Lung Cancer, 53(1). https://doi.org/10.1016/j.lungcan.2006.02.009
  • Referans 38 Spano, D., Heck, C., De Antonellis, P., Christofori, G., & Zollo, M. (2012). Molecular networks that regulate cancer metastasis. In Seminars in Cancer Biology (Vol. 22, Issue 3). https://doi.org/10.1016/j.semcancer.2012.03.006
  • Referans 39 Stetler-Stevenson, W. G., & Yu, A. E. (2001). Proteases in invasion: Matrix metalloproteinases. Seminars in Cancer Biology, 11(2). https://doi.org/10.1006/scbi.2000.0365
  • Referans 40 Stewart, B., & Wild, C. (2014). World Cancer Report 2014. International Agency for Research on Cancer, 22(1).
  • Referans 41 Tirino, V., Camerlingo, R., Bifulco, K., Irollo, E., Montella, R., Paino, F., Sessa, G., Carriero, M. V., Normanno, N., Rocco, G., & Pirozzi, G. (2013). TGF-β1 exposure induces epithelial to mesenchymal transition both in CSCs and non-CSCs of the A549 cell line, leading to an increase of migration ability in the CD133+ A549 cell fraction. Cell Death and Disease, 4(5). https://doi.org/10.1038/cddis.2013.144
  • Referans 42 Torre, L. A., Siegel, R. L., & Jemal, A. (2016). Lung cancer statistics. Advances in Experimental Medicine and Biology, 893. https://doi.org/10.1007/978-3-319-24223-1_1
  • Referans 43 Türkez, H., Geyikoǧlu, F., Tatar, A., Keleş, S., & Özkan, A. (2007). Effects of some boron compounds on peripheral human blood. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 62(11–12). https://doi.org/10.1515/znc-2007-11-1218
  • Referans 44 Wang D, Han Y, Zhu L, Deng L, Qu D, Cui F, X. Y. (2015). Effect of bevacizumab on proliferation and invasion of human lung cancer A549 cells. Article in Chinese, 37(8), 573.
  • Referans 45 Wang, D., Han, Y., Zhu, L., Deng, L., Qu, D., Cui, F., & Xu, Y. (2015). Effect of bevacizumab on proliferation and invasion of human lung cancer A549 cells. Zhonghua Zhong Liu Za Zhi [Chinese Journal of Oncology], 37(8).
  • Referans 46 Wang, L. Le, Hu, R. C., Dai, A. G., & Tan, S. X. (2015). Bevacizumab induces A549 cell apoptosis through the mechanism of endoplasmic reticulum stress in vitro. International Journal of Clinical and Experimental Pathology, 8(5).
  • Referans 47 World Health Organisation. (2020). Latest global cancer data: Cancer burden rises to 19.3 million new cases and 10.0 million cancer deaths in 2020. International Agency for Research on Cancer, december.
  • Referans 48 Yilmaz, S., Ustundag, A., Ulker, O. C., & Duydu, Y. (2016). Protective effect of boric acid on oxidative DNA damage in Chinese hamster lung fibroblast v79 cell lines. Cell Journal, 17(4).
  • Referans 49 Zafar, H., & Ali, S. (2013). Boron inhibits the proliferating cell nuclear antigen index, molybdenum containing proteins and ameliorates oxidative stress in hepatocellular carcinoma. Archives of Biochemistry and Biophysics, 529(2). https://doi.org/10.1016/j.abb.2012.11.008
  • Referans 50 Zhang, Q., Lu, S., Li, T., Yu, L., Zhang, Y., Zeng, H., Qian, X., Bi, J., & Lin, Y. (2019). ACE2 inhibits breast cancer angiogenesis via suppressing the VEGFa/VEGFR2/ERK pathway. Journal of Experimental and Clinical Cancer Research, 38(1). https://doi.org/10.1186/s13046-019-1156-5
There are 50 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Research Articles
Authors

Fatma Fırat 0000-0003-0027-5138

Tuğçe Aladağ 0000-0003-3250-6113

Publication Date September 16, 2022
Submission Date July 23, 2022
Published in Issue Year 2022

Cite

EndNote Fırat F, Aladağ T (September 1, 2022) In Vitro Effects of Boric Acid and Bevacizumab in Non-Small Cell Lung Cancer. New Trends in Medicine Sciences 3 2 61–69.