Review
BibTex RIS Cite

Advancing Patient Care: The Role of Cerebral Oximetry in Intensive Care Units

Year 2024, Volume: 5 Issue: Supplemental Issue, 156 - 160, 28.07.2024
https://doi.org/10.56766/ntms.1397430

Abstract

Yoğun bakımlarda hasta takibinin en önemli parametrelerinden birisi monitörizasyondur. Beyin metabolik olarak en aktif organlarımızdan birisi olup hipoksi ve iskemiye karşı çok duyarlıdır. Dolayısıyla serebral oksijenizasyonunun takibi önemlidir. Serebral doku oksijenizasyon takibinde birçok yöntem olmakla birlikte yatak başı kullanımı, non-invaziv olması ve kullanım kolaylığı nedeniyle serebral oksimetreler sıklıkla kullanılmaktadır. Bu cihazlar yakın kızılötesi ışığın oksijenize hemoglobin ve deoksijenize hemoglobin tarafından farklı oranlarda absorbe edilmesi temeline dayanarak çalışmaktadır. Yoğun bakımlarda travmatik beyin hasarı olan (TBI, kanama, stroke) hastalarda serebral iskemi ya da hipoksiyi erken tespit edip ikincil hasarı önlemek amacıyla kullanılabilmektedir

References

  • 1. Rasulo F, Matta B, Varanini N. Cerebral Blood Flow Monitoring. In Neuromonitoring Techniques; Academic Press: Pittsburgh, PA, USA, 2018; pp.31-56.
  • 2. Schell RM, Cole DJ. Cerebral Monitoring: Jugular Venous Oximetry. Anesth. Analg. 2000; 90:559-66.
  • 3. Samra SK, Rajajee V. Monitoring of Jugular Venous Oxygen Saturation. In Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals; Koht, A., Sloan, T.B., Toleikis, J.R., Eds.; Springer US: Boston, MA, USA, 2012; pp. 255-77.
  • 4. Nortje J, Gupta AK. The role of tissue oxygen monitoring in patients with acute brain injury. Br. J. Anaesth. 2006; 97:95–106.
  • 5. Hollinger A, Siegemund M, Cueni N, Steiner LA. Brain Tissue Oxygenation. In Neuromonitoring Techniques; Academic Press: Pittsburgh, PA, USA, 2018; pp. 249–280.
  • 6. Ghosh A, Elwell C, Smith M. Review article: cerebral near infrared spectroscopy in adults: a work in progress. Anesth Analg. 2012; 115(6):1373-83.
  • 7. Vegh T. Cerebral oximetry in general anaesthesia. Turk J Anaesthesiol Reanim. 2016; 44(5):247-49.
  • 8. Tak S, Ye JC. Statistical analysis of fNIRS data: A comprehensive review. NeuroImage. 2014; 85:72–91.
  • 9. Steppan J, Hogue CWJr. Cerebral and tissue oximetry. Best Pract Res Clin Anaesthesiol. 2014; 28(4):429-39.
  • 10. Sakudo A. Near-infrared spectroscopy for medical applications: Current status and future perspectives. Clin Chim Acta. 2016; 455:181-88.
  • 11. Matcher SJ, Elwell CE, Cooper CE, Cope M, Delpy DT. Performance comparison of several published tissue near-infrared spectroscopy algorithms. Anal Biochem. 1995; 227(1):54-68.
  • 12. Goldman S, Sutter F, Ferdinand F, Trace C. Optimizing intraoperative cerebral oxygen delivery using noninvasive cerebral oximetry decreases the incidence of stroke for cardiac surgical patients. Heart Surg Forum. 2004; 7(5):E376-81.
  • 13. Richter OM, Ludwig B. Cytochrome c oxidase--structure, func tion, and physiology of a redox-driven molecular machine. Rev Physiol Biochem Pharmacol. 2003; 147:47-74.
  • 14. Springett RJ, Wylezinska M, Cady EB, Hollis V, Cope M, Delpy DT. The oxygen dependency of cerebral oxidative metabolism in the newborn piglet studied with 31P NMRS and NIRS. Adv Exp Med Biol. 2003; 530:555-63.
  • 15. Germon TJ, Evans PD, Barnett NJ, Wall P, Manara AR, Nelson RJ. Cerebral near infrared spectroscopy: emitter-detector separation must be increased. Br J Anaesth. 1999; 82(6):831-37.
  • 16. Murkin JM, Arango M. Near-infrared spectroscopy as an index of brain and tissue oxygenation. Br J Anaesth. 2009; 103 Suppl 1:i3-13.
  • 17. Yoshitani K. Comparison of changes in jugular venous bulb oxygen saturation and cerebral oxygen saturation during variations of haemoglobin concentration under propofol and sevoflurane anaesthesia. Br J Anaesth. 2005; 94(3):341-46.
  • 18. Yoshitani K, Kawaguchi M, Miura N, Okuno T, Kanoda T, Ohnishi Y, et al. Effects of hemoglobin concentration, skull thickness, and the area of the cerebrospinal fluid layer on near-infrared spectros copy measurements. Anesthesiology. 2007; 106(3):458-62.
  • 19. Ito H, Ibaraki M, Kanno I, Fukuda H, Miura S. Changes in the arterial fraction of human cerebral blood volume during hypercapnia and hypocapnia measured by positron emission tomography. J Cereb Blood Flow Metab. 2005; 25(7):852-57.
  • 20. Green MS, Sehgal S, Tarıq R. Near-Infrared Spectroscopy: The New Must Have Tool in the Intensive Care Unit? Semin Cardiothorac Vasc Anesth. 2016; 20(3):213-24.
  • 21. Butterworth JF, Mackey DC, Wasnick JD. Morgan&Mikhail clinical anesthesiology. 2015: p. 123-42.
  • 22. Kapoor I, Mahajan C, Prabhakar H. Application of Near-Infrared Spectroscopy for the Detection of Delayed Cerebral Ischemia in Poor-Grade Subarachnoid Hemorrhage Neurocrit Care. 2021; 35(2):598-99.
  • 23. Muehlschlegel S, Selb J, Patel M et al. Feasibility of NIRS in the neurointensive care unit: a pilot study in stroke using physiological oscillations. Neurocrit Care. 2009; 11(2):288-95.
  • 24. Taussky P, O’Neal B, Daugherty WP et al.Validation of frontal near-infrared spectroscopy as noninvasive bedside monitoring for regional cerebral blood flow in brain-injured patients. Neurosurg Focus. 2012; 32(2):E2.
  • 25. Oddo M, Taccone FS. How to monitor the brain in septic patients? Minerva Anestesiol. 2015; 81(7):776-88.
  • 26. Gruartmoner G, Mesquida J, Ince C. Microcirculatory monitoring in septic patients: Where do we stand? Med Intensiva. 2017; 41(1):44-52.
  • 27. Tsukuda J, Fujitani S, Morisawa K et al. Near-infrared spectroscopy monitoring during out-of-hospital cardiac arrest: can the initial cerebral tissue oxygenation index predict ROSC? Emerg Med J. 2019; 36(1):33-38.
  • 28. Schnaubelt S, Sulzgruber P, Menger J et al. Regional cerebral oxygen saturation during cardiopulmonary resuscitation as a predictor of return of spontaneous circulation and favourable neurological outcome - A review of the current literature. Resuscitation. 2018; 125:39-47.
  • 29. Parnia S, Yang J, Nguyen R et al. Cerebral Oximetry During Cardiac Arrest: A Multicenter Study of Neurologic Outcomes and Survival. Crit Care Med. 2016; 44(9):1663-74.
Year 2024, Volume: 5 Issue: Supplemental Issue, 156 - 160, 28.07.2024
https://doi.org/10.56766/ntms.1397430

Abstract

References

  • 1. Rasulo F, Matta B, Varanini N. Cerebral Blood Flow Monitoring. In Neuromonitoring Techniques; Academic Press: Pittsburgh, PA, USA, 2018; pp.31-56.
  • 2. Schell RM, Cole DJ. Cerebral Monitoring: Jugular Venous Oximetry. Anesth. Analg. 2000; 90:559-66.
  • 3. Samra SK, Rajajee V. Monitoring of Jugular Venous Oxygen Saturation. In Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals; Koht, A., Sloan, T.B., Toleikis, J.R., Eds.; Springer US: Boston, MA, USA, 2012; pp. 255-77.
  • 4. Nortje J, Gupta AK. The role of tissue oxygen monitoring in patients with acute brain injury. Br. J. Anaesth. 2006; 97:95–106.
  • 5. Hollinger A, Siegemund M, Cueni N, Steiner LA. Brain Tissue Oxygenation. In Neuromonitoring Techniques; Academic Press: Pittsburgh, PA, USA, 2018; pp. 249–280.
  • 6. Ghosh A, Elwell C, Smith M. Review article: cerebral near infrared spectroscopy in adults: a work in progress. Anesth Analg. 2012; 115(6):1373-83.
  • 7. Vegh T. Cerebral oximetry in general anaesthesia. Turk J Anaesthesiol Reanim. 2016; 44(5):247-49.
  • 8. Tak S, Ye JC. Statistical analysis of fNIRS data: A comprehensive review. NeuroImage. 2014; 85:72–91.
  • 9. Steppan J, Hogue CWJr. Cerebral and tissue oximetry. Best Pract Res Clin Anaesthesiol. 2014; 28(4):429-39.
  • 10. Sakudo A. Near-infrared spectroscopy for medical applications: Current status and future perspectives. Clin Chim Acta. 2016; 455:181-88.
  • 11. Matcher SJ, Elwell CE, Cooper CE, Cope M, Delpy DT. Performance comparison of several published tissue near-infrared spectroscopy algorithms. Anal Biochem. 1995; 227(1):54-68.
  • 12. Goldman S, Sutter F, Ferdinand F, Trace C. Optimizing intraoperative cerebral oxygen delivery using noninvasive cerebral oximetry decreases the incidence of stroke for cardiac surgical patients. Heart Surg Forum. 2004; 7(5):E376-81.
  • 13. Richter OM, Ludwig B. Cytochrome c oxidase--structure, func tion, and physiology of a redox-driven molecular machine. Rev Physiol Biochem Pharmacol. 2003; 147:47-74.
  • 14. Springett RJ, Wylezinska M, Cady EB, Hollis V, Cope M, Delpy DT. The oxygen dependency of cerebral oxidative metabolism in the newborn piglet studied with 31P NMRS and NIRS. Adv Exp Med Biol. 2003; 530:555-63.
  • 15. Germon TJ, Evans PD, Barnett NJ, Wall P, Manara AR, Nelson RJ. Cerebral near infrared spectroscopy: emitter-detector separation must be increased. Br J Anaesth. 1999; 82(6):831-37.
  • 16. Murkin JM, Arango M. Near-infrared spectroscopy as an index of brain and tissue oxygenation. Br J Anaesth. 2009; 103 Suppl 1:i3-13.
  • 17. Yoshitani K. Comparison of changes in jugular venous bulb oxygen saturation and cerebral oxygen saturation during variations of haemoglobin concentration under propofol and sevoflurane anaesthesia. Br J Anaesth. 2005; 94(3):341-46.
  • 18. Yoshitani K, Kawaguchi M, Miura N, Okuno T, Kanoda T, Ohnishi Y, et al. Effects of hemoglobin concentration, skull thickness, and the area of the cerebrospinal fluid layer on near-infrared spectros copy measurements. Anesthesiology. 2007; 106(3):458-62.
  • 19. Ito H, Ibaraki M, Kanno I, Fukuda H, Miura S. Changes in the arterial fraction of human cerebral blood volume during hypercapnia and hypocapnia measured by positron emission tomography. J Cereb Blood Flow Metab. 2005; 25(7):852-57.
  • 20. Green MS, Sehgal S, Tarıq R. Near-Infrared Spectroscopy: The New Must Have Tool in the Intensive Care Unit? Semin Cardiothorac Vasc Anesth. 2016; 20(3):213-24.
  • 21. Butterworth JF, Mackey DC, Wasnick JD. Morgan&Mikhail clinical anesthesiology. 2015: p. 123-42.
  • 22. Kapoor I, Mahajan C, Prabhakar H. Application of Near-Infrared Spectroscopy for the Detection of Delayed Cerebral Ischemia in Poor-Grade Subarachnoid Hemorrhage Neurocrit Care. 2021; 35(2):598-99.
  • 23. Muehlschlegel S, Selb J, Patel M et al. Feasibility of NIRS in the neurointensive care unit: a pilot study in stroke using physiological oscillations. Neurocrit Care. 2009; 11(2):288-95.
  • 24. Taussky P, O’Neal B, Daugherty WP et al.Validation of frontal near-infrared spectroscopy as noninvasive bedside monitoring for regional cerebral blood flow in brain-injured patients. Neurosurg Focus. 2012; 32(2):E2.
  • 25. Oddo M, Taccone FS. How to monitor the brain in septic patients? Minerva Anestesiol. 2015; 81(7):776-88.
  • 26. Gruartmoner G, Mesquida J, Ince C. Microcirculatory monitoring in septic patients: Where do we stand? Med Intensiva. 2017; 41(1):44-52.
  • 27. Tsukuda J, Fujitani S, Morisawa K et al. Near-infrared spectroscopy monitoring during out-of-hospital cardiac arrest: can the initial cerebral tissue oxygenation index predict ROSC? Emerg Med J. 2019; 36(1):33-38.
  • 28. Schnaubelt S, Sulzgruber P, Menger J et al. Regional cerebral oxygen saturation during cardiopulmonary resuscitation as a predictor of return of spontaneous circulation and favourable neurological outcome - A review of the current literature. Resuscitation. 2018; 125:39-47.
  • 29. Parnia S, Yang J, Nguyen R et al. Cerebral Oximetry During Cardiac Arrest: A Multicenter Study of Neurologic Outcomes and Survival. Crit Care Med. 2016; 44(9):1663-74.
There are 29 citations in total.

Details

Primary Language English
Subjects Anaesthesiology
Journal Section Review
Authors

Sema Turan 0000-0003-2443-0390

Sultan Sevim-yakın This is me 0000-0002-5782-1403

Publication Date July 28, 2024
Submission Date November 28, 2023
Acceptance Date July 20, 2024
Published in Issue Year 2024 Volume: 5 Issue: Supplemental Issue

Cite

EndNote Turan S, Sevim-yakın S (July 1, 2024) Advancing Patient Care: The Role of Cerebral Oximetry in Intensive Care Units. New Trends in Medicine Sciences 5 Supplemental Issue 156–160.