Research Article
BibTex RIS Cite

Ti3SiC2 MAX FAZININ ELEMENTEL TOZ KULLANILARAK SENTEZİ

Year 2018, Volume: 13 Issue: 3, 156 - 166, 23.07.2018

Abstract

MAX seramik ailesinde en dikkat çeken ve
üzerinde en fazla araştırma yapılan sistem Ti-Si-C sistemi ve 312 yapısıdır. Ti3SiC2
fazı farklı başlangıç malzemeleri kullanılarak üretilmektedir. Kullanılan
malzemelere bağlı olarak, üretim parametreleri ve yöntemleri farklılık
göstermektedir. Bu çalışmada, titanyum, silisyum ve karbon kullanılarak,
hazırlanan stiokiometrik karışımdan yüksek safiyette Ti3SiC2
fazının sentezi çalışılmıştır. Kullanılan başlangıç karışımları ve elde edilen
reaksiyon ürünleri SEM, XRD, XRF, TG/DTA gibi analiz yöntemleriyle analiz
edilmiştir. Deneysel sonuçlara göre, başlangıç karışımında bulunan silisyum
miktarı önemlidir. X-ışınları analizi göstermiştir ki; 1350˚C'de ve iki saat
sinterleme süresinden sonra yapıda 312 MAX fazı oluşmaktadır. Ortamda bulunan
karbon kilit role sahiptir ve fazla karbonun bulunması halinde oluşan MAX fazı,
yüksek sıcaklılarda ikili karbür yapısına dönüşmektedir. 

References

  • [1] Noontny, H., (1970). Struktu chemite einiger verbindungen der ubergangs metallemit den elementen C Si Ge Sn. Prog Solid State Chem, vol:2, pp:27-62.
  • [2] Noontny, H., Schuster, J.C., Rogl, P., (1982). Structural chemistry of complex carbides and related compounds, J Solis State Chem, vol:44, pp:126-133.
  • [3] Barsoum, M.W. and El-Raghy, T., (1996). Synthesis and characterization of a remarkable Ceramic: Ti3SiC2. J Amer Cer Soc. Vol:79, pp:1953-1956.
  • [4] Hu, C., Xhang, H., Li, F., Huang, Q., and Bao, Y., (2013). New phases discovery in MAX family. Int J Ref Metals Hard Mat, vol:36, pp:300-312.
  • [5] Rodovic, M. and Barsoum, M.W., (2013). Max phases: Bridging the gap between metals and ceramics. Amer Ceram Soc, vol:92, no:3, pp:20-27.
  • [6] Barsoum, M.W. and El-Raghy, T., (2001). The max phases: unique new carbides and nitride materials. Amer Scientific, vol:89, pp:334-343.
  • [7] Chen, D., Shirato, K., Barsoum, M.W., El-Raghy, T., and Ritchie, R.O., (2001). Cyclic fatigue-crack growth and fracture properties in Ti3SiC2 ceramics at elevated temperatures, J Amer Ceram Soc vol:84, no:12, pp:2914-2920.
  • [8] Sunberg, M., Malamgvist, G., Magnusson, A., and El-Raghy, T., (2004). Alumina forming high temperature silicides-carbides, Ceram Inter, vol:30, pp:899-1904.
  • [9] Wang, X. and ark., (2012). Ti5Al2C3: A new ternary carbide belonging to MAX phases in the Ti–Al–C system. J Amer Cer Soc. Vol:95, pp:1508-1510.
  • [10] Lin, Z.J., and ark., (2006). Microstructure and theoretical bulk modulus of layered ternary tantalum aluminum carbides, J Amer Cer Soc. 89:3765-376.
  • [11] Dubois, S., Cabioch, T., Chartier, P., Gauthier, V., and Jaouen, M., (2007). A new ternary nano laminate carbide: Ti3SnC2. J Amer Cer Soc. 90:2642-2644.
  • [12] Etzkorn, J., Ade, M., and Hillebrecht, H., (2007). V2AlC, V4AlC3-x (x≈0.31), and V12Al3C8: synthesis, crystal growth, structure, and superstructure, Inorganic Chemistry 46:7646-7653.
  • [13] Zhou, Y.C. Meng, F.L., and Zhang, J., (2008). New MAX-phase compounds in the V-Cr-Al-C system. J Amer Cer Soc. 91:1357-1360. [14] Etzkorn, J., Ade, M., and Hillebrecht, H., (2007). Ta3AlC2 and Ta4AlC3-single-crystal investigations of two new ternary carbides of tantalum synthesized by the molten metal technique'', Inorganic Chemistry 46: 1410-1418.
  • [15] Hu, C.F, Li, F.Z., Zhang, J., Wang, J.M., Wang, J.Y., and Zhou, Y.C., (2007). Nb4AlC3: A new compound belonging to the MAX phases, Scripta Materialia, 57:893-896.
  • [16] Procopio, A.T., El-Raghy, T., and Barsoum M.W., (2000). Synthesis of Ti4AlN3 and phase equilibria in the Ti-Al-N system. Metallurgy and Material Transactions A 1:373-378.
  • [17] Raoult, C., Langlais, F., and Naslain, R., (1994). Solid state synthesis and obtain and characterization of the ternary phase Ti3SiC2. J Mat Sci. Vol:29, pp:3384-3394.
  • [18] Gulbinski, W., Gilewicz, A., Suszko, T., Warcholinski, B., and Kuklinski, Z., (2004). Ti-Si-C sputter deposited thin film coatings. Surface and Coatings Tech. Vol:180-181, pp:341-346.
  • [19] Luo, Y.M., Pan, W., Li, S.Q., and Chen, J., (2002). Synthesis and mechanical properties of in-situ hot-pressed Ti3SiC2 poly crystals. Ceram Int. Vol:28, pp:227-230.
  • [20] Atasoy, A., (2014). Effect of Al powder addition on the formation of MAX phase. 10th Inter. Conference on the Science of Hard Materials. Cancun-Mexico.
  • [21] Atasoy, A. and Saka, E., (2016). Synthesis of the MAX phase of Ti3SiC2 ceramic from oxide. 18. Int. Metallurgy and Materials Congress. Istanbul, ss:71-74.
  • [22] Atasoy, A. and Saka, E., (2017). Ti3SiC2 Max phase from TiC-Si-Ti mixture. 5th Int. Symp on Innv. Techn. in Eng. Scn. Baku University, will be presented.
  • [23] Atasoy, A., Saka, E., and Koşar, A., (2017). An investigation on processing of Ti3SiC2 Max phase materials from bottom to up under the laboratory conditions: from TiC-Si-C powders. 8. Inter. Advanced Technologies Symposium. Elazığ-Turkey.
  • [24] Atasoy, A. and Koşar, A., (2017). Ti-Si-C MAX phase system. 5th Int. Symp on Innv. Techn. In Eng. Scn. Baku University, will be presented.
  • [25] Atasoy, A., (2013). Max fazlı (katmanlı) seramikler. II. Ulusal Ege Kompozit Malzemeler Sempozyumu. Kuşadası-Muğla-Turkey.
  • [26] Altuncu, E., Vardar, S., Saka, E. ve Atasoy, A., (2015), MAX fazı alaşımları ve termo-fiziksel özellikleri. J Aeronautics and Space Tech. 8(1):75-86.

SYNTHESIS OF Ti3SiC2 MAX PHASE FROM ELEMENTAL POWDERS

Year 2018, Volume: 13 Issue: 3, 156 - 166, 23.07.2018

Abstract

In MAX phase material
family, Ti-Si-C system and especially 312 Ti3SiC2 phase
is the most attracted and investigated structure. It can be produced from
different methods. As expected, each method differs processing methods,
experimental conditions and parameters depending on the starting composition. In
this article, the processing of high purity Ti3SiC2 phase
was studied using Ti, Si and C powders. The powders were mixed in
stoichiometric ratio to obtain pure Ti3SiC2 phase. Both
of the initial and the obtained product samples were characterised using
SEM,
XRD, XRF, TG/DTA
methods. The results showed
that, the silicon content was important and carbon plays critical role. X-ray
diffraction analysis showed that the 312 TiSiC phases was formed after the
sintering at temperature of 1350
˚C for 2 h. If excess carbon is present in the system,
the formed MAX phase was converted into binary carbide phases. 

References

  • [1] Noontny, H., (1970). Struktu chemite einiger verbindungen der ubergangs metallemit den elementen C Si Ge Sn. Prog Solid State Chem, vol:2, pp:27-62.
  • [2] Noontny, H., Schuster, J.C., Rogl, P., (1982). Structural chemistry of complex carbides and related compounds, J Solis State Chem, vol:44, pp:126-133.
  • [3] Barsoum, M.W. and El-Raghy, T., (1996). Synthesis and characterization of a remarkable Ceramic: Ti3SiC2. J Amer Cer Soc. Vol:79, pp:1953-1956.
  • [4] Hu, C., Xhang, H., Li, F., Huang, Q., and Bao, Y., (2013). New phases discovery in MAX family. Int J Ref Metals Hard Mat, vol:36, pp:300-312.
  • [5] Rodovic, M. and Barsoum, M.W., (2013). Max phases: Bridging the gap between metals and ceramics. Amer Ceram Soc, vol:92, no:3, pp:20-27.
  • [6] Barsoum, M.W. and El-Raghy, T., (2001). The max phases: unique new carbides and nitride materials. Amer Scientific, vol:89, pp:334-343.
  • [7] Chen, D., Shirato, K., Barsoum, M.W., El-Raghy, T., and Ritchie, R.O., (2001). Cyclic fatigue-crack growth and fracture properties in Ti3SiC2 ceramics at elevated temperatures, J Amer Ceram Soc vol:84, no:12, pp:2914-2920.
  • [8] Sunberg, M., Malamgvist, G., Magnusson, A., and El-Raghy, T., (2004). Alumina forming high temperature silicides-carbides, Ceram Inter, vol:30, pp:899-1904.
  • [9] Wang, X. and ark., (2012). Ti5Al2C3: A new ternary carbide belonging to MAX phases in the Ti–Al–C system. J Amer Cer Soc. Vol:95, pp:1508-1510.
  • [10] Lin, Z.J., and ark., (2006). Microstructure and theoretical bulk modulus of layered ternary tantalum aluminum carbides, J Amer Cer Soc. 89:3765-376.
  • [11] Dubois, S., Cabioch, T., Chartier, P., Gauthier, V., and Jaouen, M., (2007). A new ternary nano laminate carbide: Ti3SnC2. J Amer Cer Soc. 90:2642-2644.
  • [12] Etzkorn, J., Ade, M., and Hillebrecht, H., (2007). V2AlC, V4AlC3-x (x≈0.31), and V12Al3C8: synthesis, crystal growth, structure, and superstructure, Inorganic Chemistry 46:7646-7653.
  • [13] Zhou, Y.C. Meng, F.L., and Zhang, J., (2008). New MAX-phase compounds in the V-Cr-Al-C system. J Amer Cer Soc. 91:1357-1360. [14] Etzkorn, J., Ade, M., and Hillebrecht, H., (2007). Ta3AlC2 and Ta4AlC3-single-crystal investigations of two new ternary carbides of tantalum synthesized by the molten metal technique'', Inorganic Chemistry 46: 1410-1418.
  • [15] Hu, C.F, Li, F.Z., Zhang, J., Wang, J.M., Wang, J.Y., and Zhou, Y.C., (2007). Nb4AlC3: A new compound belonging to the MAX phases, Scripta Materialia, 57:893-896.
  • [16] Procopio, A.T., El-Raghy, T., and Barsoum M.W., (2000). Synthesis of Ti4AlN3 and phase equilibria in the Ti-Al-N system. Metallurgy and Material Transactions A 1:373-378.
  • [17] Raoult, C., Langlais, F., and Naslain, R., (1994). Solid state synthesis and obtain and characterization of the ternary phase Ti3SiC2. J Mat Sci. Vol:29, pp:3384-3394.
  • [18] Gulbinski, W., Gilewicz, A., Suszko, T., Warcholinski, B., and Kuklinski, Z., (2004). Ti-Si-C sputter deposited thin film coatings. Surface and Coatings Tech. Vol:180-181, pp:341-346.
  • [19] Luo, Y.M., Pan, W., Li, S.Q., and Chen, J., (2002). Synthesis and mechanical properties of in-situ hot-pressed Ti3SiC2 poly crystals. Ceram Int. Vol:28, pp:227-230.
  • [20] Atasoy, A., (2014). Effect of Al powder addition on the formation of MAX phase. 10th Inter. Conference on the Science of Hard Materials. Cancun-Mexico.
  • [21] Atasoy, A. and Saka, E., (2016). Synthesis of the MAX phase of Ti3SiC2 ceramic from oxide. 18. Int. Metallurgy and Materials Congress. Istanbul, ss:71-74.
  • [22] Atasoy, A. and Saka, E., (2017). Ti3SiC2 Max phase from TiC-Si-Ti mixture. 5th Int. Symp on Innv. Techn. in Eng. Scn. Baku University, will be presented.
  • [23] Atasoy, A., Saka, E., and Koşar, A., (2017). An investigation on processing of Ti3SiC2 Max phase materials from bottom to up under the laboratory conditions: from TiC-Si-C powders. 8. Inter. Advanced Technologies Symposium. Elazığ-Turkey.
  • [24] Atasoy, A. and Koşar, A., (2017). Ti-Si-C MAX phase system. 5th Int. Symp on Innv. Techn. In Eng. Scn. Baku University, will be presented.
  • [25] Atasoy, A., (2013). Max fazlı (katmanlı) seramikler. II. Ulusal Ege Kompozit Malzemeler Sempozyumu. Kuşadası-Muğla-Turkey.
  • [26] Altuncu, E., Vardar, S., Saka, E. ve Atasoy, A., (2015), MAX fazı alaşımları ve termo-fiziksel özellikleri. J Aeronautics and Space Tech. 8(1):75-86.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Ahmet Atasoy 0000-0003-1564-8793

Emre Saka 0000-0002-5868-7664

Abdullah Koşar This is me 0000-0003-1479-0958

Publication Date July 23, 2018
Published in Issue Year 2018 Volume: 13 Issue: 3

Cite

APA Atasoy, A., Saka, E., & Koşar, A. (2018). Ti3SiC2 MAX FAZININ ELEMENTEL TOZ KULLANILARAK SENTEZİ. Engineering Sciences, 13(3), 156-166.
AMA Atasoy A, Saka E, Koşar A. Ti3SiC2 MAX FAZININ ELEMENTEL TOZ KULLANILARAK SENTEZİ. Engineering Sciences. July 2018;13(3):156-166.
Chicago Atasoy, Ahmet, Emre Saka, and Abdullah Koşar. “Ti3SiC2 MAX FAZININ ELEMENTEL TOZ KULLANILARAK SENTEZİ”. Engineering Sciences 13, no. 3 (July 2018): 156-66.
EndNote Atasoy A, Saka E, Koşar A (July 1, 2018) Ti3SiC2 MAX FAZININ ELEMENTEL TOZ KULLANILARAK SENTEZİ. Engineering Sciences 13 3 156–166.
IEEE A. Atasoy, E. Saka, and A. Koşar, “Ti3SiC2 MAX FAZININ ELEMENTEL TOZ KULLANILARAK SENTEZİ”, Engineering Sciences, vol. 13, no. 3, pp. 156–166, 2018.
ISNAD Atasoy, Ahmet et al. “Ti3SiC2 MAX FAZININ ELEMENTEL TOZ KULLANILARAK SENTEZİ”. Engineering Sciences 13/3 (July 2018), 156-166.
JAMA Atasoy A, Saka E, Koşar A. Ti3SiC2 MAX FAZININ ELEMENTEL TOZ KULLANILARAK SENTEZİ. Engineering Sciences. 2018;13:156–166.
MLA Atasoy, Ahmet et al. “Ti3SiC2 MAX FAZININ ELEMENTEL TOZ KULLANILARAK SENTEZİ”. Engineering Sciences, vol. 13, no. 3, 2018, pp. 156-6.
Vancouver Atasoy A, Saka E, Koşar A. Ti3SiC2 MAX FAZININ ELEMENTEL TOZ KULLANILARAK SENTEZİ. Engineering Sciences. 2018;13(3):156-6.