Research Article
BibTex RIS Cite

ZİRKONYUM KARBÜR ESASLI AŞIRI YÜKSEK SICAKLIK SERAMİK KOMPOZİT TOZLARIN METALOTERMİK YÖNTEMLE ÜRETİMİ

Year 2019, Volume: 14 Issue: 1, 17 - 25, 31.01.2019

Abstract

   Günümüzde malzeme bilimi çok gelişmiş olmasına
rağmen, yeni teknolojik gereksinimler, var olanlardan farklı yeni nesil
malzemelere ihtiyaç duyulmaktadır. Yakın bir gelecekte uzay yolculuğunun
gerçekleşebilir olması; aşırı yüksek sıcaklık ortamlarında, çok amaçlı ve
tekrarlı kullanılabilir seramik kompozit malzemelerin geliştirilmesine bağlıdır.
Aşırı yüksek sıcaklık seramik malzemeleri (AYSS veya Ultra high temperature
ceramics-UHTC) 2300˚C ve üzerindeki ortamlarda kullanılabilir seramikler olarak
tanımlanmaktadır. Bu çalışmada, yüksek ergime noktasına sahip, kimyasal ve
termal kararlılığı olan AYSS grubuna ait,
ZrB2-ZrC-
SiC-Al
2O3
seramik kompozit tozlarının
üretimi, laboratuvar şartlarında, zirkon, borik asit, metalik alüminyum ve
grafit başlangıç karışımı kullanılarak araştırılmıştır. Alüminotermik yöntem
kullanılmış, başlangıç karışımları ve elde edilen reaksiyon ürünleri SEM, XRD,
XRF, TG/DTA gibi analiz yöntemleri ile analiz edilmiştir. Deneysel şartlara
bağlı olarak, başlangıç karışımında bulunan zirkon, çok düşük sıcaklıklarda
ayrışmıştır. Zirkonyum ve silisyum oksitleri, ZrC ve ZrB
2 ve SiC
fazına dönüştüğü görülmüştür. Karbür ve borür fazlarının haricinde, proses
edilmiş numunelerde Al
2O3 oluşumu da tespit edilmiştir. 

References

  • [1] Fahrenholtz, W.G., Hilmas, G.E., Talmy, I.G., and Zaykoski, J.A., (2007). Refractory Diborides of Zirconium and Hafnium, J American Ceramic Society. Cilt:90, No:5, ss:1347-1364.
  • [2] Paul, A., et all., (2012). UHTC Composites for Hypersonic Applications. American Ceramic Bulletin. Cilt:91, ss:22-29.
  • [3] Tang, S. and Hu, C., (2017). Design, Preparation and Properties of Carbon Fiber Reinforced Ultra-High Temperature Ceramic Composites for Aerospace Applications: A Review, J Materials Science and Technology. Cilt:33, ss:117-130.
  • [4] Fahrenholtz, W.G., Hilmas, G.E., Chamberlain, A.L., and Zimmermann, J.W., (2004). Processing and Characterisation of ZrB2-based Ultra-High Temperature Monolithic and Fibrous Monolithic Ceramics. J Materials Science. Cilt:39, ss:5951-5957.
  • [5] Talmy, I.G., Zaykoski, J.A., and Opeka, M.M., (2010). Synthesis, Processing and Properties of TaC-TaB2-C Ceramics, J European Ceramic Society. Sayı:30, ss:2253-2263.
  • [6] Mitra, R., Upender, S., Mallik, M., Chakraborty, S., and Ray, K.K., (2009). Mechanical, Thermal and Oxidation behaviour of Zirconium Diboride Based Ultra-High Temperature Ceramic Composites, Key Engineering Materials. Cilt:395, ss:55-68.
  • [7] Bellosi, A. and Scatteia, L., (2008). Processing and Properties Of Ultra-High Temperature Ceramics for Space Applications, Materials Science and Engineering: A. Sayı:485, ss:415-421.
  • [8] Ghaffari, A., Faghihi-Sania, A., Golestani-Fardb, F., and Ebrahimi, S., (2013). Pressureless Sintering of Ta0.8 Hf0.2 C UHTC in the Presence of MoSi2, Ceramics International. 39, ss:1985-1989.
  • [9] Sciti, D., Silvestroni, L., and Bellosi, A., (2006). High-Density Pressureless-Sintered HfC-based Composites, J American Ceramic Society. Cilt:89 Sayı:8, ss:2668-2670.
  • [10] Setoudeh, N. and Weham, N.J., (2014). Carboniridation of Mechanically Activated Mixtures of Zircon And Carbon, J Alloys and Compounds. Cilt:586, ss:730-735.
  • [11] Deng, X., ve ark., (2015). Preparation and Characterisation of ZrB2-SiC Composite Powders from Zircon Via Microwave-Assisted boro/carbothermal Reduction, Ceramics Internetional. Cilt:41, ss:1419-1426.
  • [12] Ni, D., Zhang, G., Kan, Y., and Wang, P., (2010). Hot Pressed HfB2 and HfB2-20% SiC Ceramics Based on HfB2 Powder Synthesised by Borothermal Reduction of HfO2, Inter J Applied Ceramic Technology. Cilt:7, Sayı:6, ss:830-836.
  • [13] Monteverde, F., Melandri, C., and Guicciardi, S., (2006). Microstructure and Mechanical Properties of an HfB2 + 30 vol. %SiC Composite Consolidated by Spark Plasma Sintering, Materials Chemistry and Physics. Cilt:100, ss:513-519.
  • [14] Licheri, R., Orru, R., Musa, C., and Cao, G., (2008). Combination of SHS and SPS Techniques for Fabrication of Fully Dense Composite, Materials Letters. Cilt:62, ss:432-435.
  • [15] Ran, S., Vanderbiest, O., and Vlengels, J., (2010). ZrB2 Powders Synthesis by Borothermal Reduction, J American Ceramic Society. Cilt:93, Sayı:6, ss:1586-1590.
  • [16] Jaalaly, M., Tamizifar, M., Bafghi, M.S., and Gotor, F.J., (2013). Mechanochemical Synthesis of ZrB2-SiC-ZrC Nano Composite Powder by Metallothermic Reduction of Zircon. J Alloys and Compounds. Cilt:581, ss:782-787.
  • [17] Atasoy, A., (2010). The Aluminothermic Reduction of Boric Acid, Int. J. Refractory Metals and Hard Materials. Cilt:28, ss:616-622.

PRODUCTION OF ZRC BASED ULTRA HIGH TEMPERATURE CERAMIC COMPOSITE POWDERS BY METALLOTHERMIC METHOD

Year 2019, Volume: 14 Issue: 1, 17 - 25, 31.01.2019

Abstract

      Although
material science is advanced at present time, new technological developments
require new generation and different materials that are commercially not
available in global market. In order to make long distance space journeys
possible in near future, innovation of multipurpose and reusable ceramic
composite materials for at high temperature environments are needed. Ceramics
that are useable at elevated temperatures as high as 2300˚C are called Ultra high
temperature ceramics (UHTC).
In this study,
the processing of UHTCs based on ZrC/ZrB
2/SiC/Al2O3
ceramic composite that has high melting point, chemical and thermal stability, at
the laboratory conditions was investigated using zircon, boric acid, carbon and
aluminium powders. Aluminothermic method was chosen, the starting mixtures and
the obtained reaction products were analysed using SEM, XRD, XRF and TG/DTA analysis
methods.
The experimental results showed that, the obtained sample
consists of ZrB
2/ZrC as a matrix phases. 

References

  • [1] Fahrenholtz, W.G., Hilmas, G.E., Talmy, I.G., and Zaykoski, J.A., (2007). Refractory Diborides of Zirconium and Hafnium, J American Ceramic Society. Cilt:90, No:5, ss:1347-1364.
  • [2] Paul, A., et all., (2012). UHTC Composites for Hypersonic Applications. American Ceramic Bulletin. Cilt:91, ss:22-29.
  • [3] Tang, S. and Hu, C., (2017). Design, Preparation and Properties of Carbon Fiber Reinforced Ultra-High Temperature Ceramic Composites for Aerospace Applications: A Review, J Materials Science and Technology. Cilt:33, ss:117-130.
  • [4] Fahrenholtz, W.G., Hilmas, G.E., Chamberlain, A.L., and Zimmermann, J.W., (2004). Processing and Characterisation of ZrB2-based Ultra-High Temperature Monolithic and Fibrous Monolithic Ceramics. J Materials Science. Cilt:39, ss:5951-5957.
  • [5] Talmy, I.G., Zaykoski, J.A., and Opeka, M.M., (2010). Synthesis, Processing and Properties of TaC-TaB2-C Ceramics, J European Ceramic Society. Sayı:30, ss:2253-2263.
  • [6] Mitra, R., Upender, S., Mallik, M., Chakraborty, S., and Ray, K.K., (2009). Mechanical, Thermal and Oxidation behaviour of Zirconium Diboride Based Ultra-High Temperature Ceramic Composites, Key Engineering Materials. Cilt:395, ss:55-68.
  • [7] Bellosi, A. and Scatteia, L., (2008). Processing and Properties Of Ultra-High Temperature Ceramics for Space Applications, Materials Science and Engineering: A. Sayı:485, ss:415-421.
  • [8] Ghaffari, A., Faghihi-Sania, A., Golestani-Fardb, F., and Ebrahimi, S., (2013). Pressureless Sintering of Ta0.8 Hf0.2 C UHTC in the Presence of MoSi2, Ceramics International. 39, ss:1985-1989.
  • [9] Sciti, D., Silvestroni, L., and Bellosi, A., (2006). High-Density Pressureless-Sintered HfC-based Composites, J American Ceramic Society. Cilt:89 Sayı:8, ss:2668-2670.
  • [10] Setoudeh, N. and Weham, N.J., (2014). Carboniridation of Mechanically Activated Mixtures of Zircon And Carbon, J Alloys and Compounds. Cilt:586, ss:730-735.
  • [11] Deng, X., ve ark., (2015). Preparation and Characterisation of ZrB2-SiC Composite Powders from Zircon Via Microwave-Assisted boro/carbothermal Reduction, Ceramics Internetional. Cilt:41, ss:1419-1426.
  • [12] Ni, D., Zhang, G., Kan, Y., and Wang, P., (2010). Hot Pressed HfB2 and HfB2-20% SiC Ceramics Based on HfB2 Powder Synthesised by Borothermal Reduction of HfO2, Inter J Applied Ceramic Technology. Cilt:7, Sayı:6, ss:830-836.
  • [13] Monteverde, F., Melandri, C., and Guicciardi, S., (2006). Microstructure and Mechanical Properties of an HfB2 + 30 vol. %SiC Composite Consolidated by Spark Plasma Sintering, Materials Chemistry and Physics. Cilt:100, ss:513-519.
  • [14] Licheri, R., Orru, R., Musa, C., and Cao, G., (2008). Combination of SHS and SPS Techniques for Fabrication of Fully Dense Composite, Materials Letters. Cilt:62, ss:432-435.
  • [15] Ran, S., Vanderbiest, O., and Vlengels, J., (2010). ZrB2 Powders Synthesis by Borothermal Reduction, J American Ceramic Society. Cilt:93, Sayı:6, ss:1586-1590.
  • [16] Jaalaly, M., Tamizifar, M., Bafghi, M.S., and Gotor, F.J., (2013). Mechanochemical Synthesis of ZrB2-SiC-ZrC Nano Composite Powder by Metallothermic Reduction of Zircon. J Alloys and Compounds. Cilt:581, ss:782-787.
  • [17] Atasoy, A., (2010). The Aluminothermic Reduction of Boric Acid, Int. J. Refractory Metals and Hard Materials. Cilt:28, ss:616-622.
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Ahmet Atasoy 0000-0003-1564-8793

Büşra Demir This is me 0000-0002-8904-8742

Publication Date January 31, 2019
Published in Issue Year 2019 Volume: 14 Issue: 1

Cite

APA Atasoy, A., & Demir, B. (2019). ZİRKONYUM KARBÜR ESASLI AŞIRI YÜKSEK SICAKLIK SERAMİK KOMPOZİT TOZLARIN METALOTERMİK YÖNTEMLE ÜRETİMİ. Engineering Sciences, 14(1), 17-25.
AMA Atasoy A, Demir B. ZİRKONYUM KARBÜR ESASLI AŞIRI YÜKSEK SICAKLIK SERAMİK KOMPOZİT TOZLARIN METALOTERMİK YÖNTEMLE ÜRETİMİ. Engineering Sciences. January 2019;14(1):17-25.
Chicago Atasoy, Ahmet, and Büşra Demir. “ZİRKONYUM KARBÜR ESASLI AŞIRI YÜKSEK SICAKLIK SERAMİK KOMPOZİT TOZLARIN METALOTERMİK YÖNTEMLE ÜRETİMİ”. Engineering Sciences 14, no. 1 (January 2019): 17-25.
EndNote Atasoy A, Demir B (January 1, 2019) ZİRKONYUM KARBÜR ESASLI AŞIRI YÜKSEK SICAKLIK SERAMİK KOMPOZİT TOZLARIN METALOTERMİK YÖNTEMLE ÜRETİMİ. Engineering Sciences 14 1 17–25.
IEEE A. Atasoy and B. Demir, “ZİRKONYUM KARBÜR ESASLI AŞIRI YÜKSEK SICAKLIK SERAMİK KOMPOZİT TOZLARIN METALOTERMİK YÖNTEMLE ÜRETİMİ”, Engineering Sciences, vol. 14, no. 1, pp. 17–25, 2019.
ISNAD Atasoy, Ahmet - Demir, Büşra. “ZİRKONYUM KARBÜR ESASLI AŞIRI YÜKSEK SICAKLIK SERAMİK KOMPOZİT TOZLARIN METALOTERMİK YÖNTEMLE ÜRETİMİ”. Engineering Sciences 14/1 (January 2019), 17-25.
JAMA Atasoy A, Demir B. ZİRKONYUM KARBÜR ESASLI AŞIRI YÜKSEK SICAKLIK SERAMİK KOMPOZİT TOZLARIN METALOTERMİK YÖNTEMLE ÜRETİMİ. Engineering Sciences. 2019;14:17–25.
MLA Atasoy, Ahmet and Büşra Demir. “ZİRKONYUM KARBÜR ESASLI AŞIRI YÜKSEK SICAKLIK SERAMİK KOMPOZİT TOZLARIN METALOTERMİK YÖNTEMLE ÜRETİMİ”. Engineering Sciences, vol. 14, no. 1, 2019, pp. 17-25.
Vancouver Atasoy A, Demir B. ZİRKONYUM KARBÜR ESASLI AŞIRI YÜKSEK SICAKLIK SERAMİK KOMPOZİT TOZLARIN METALOTERMİK YÖNTEMLE ÜRETİMİ. Engineering Sciences. 2019;14(1):17-25.