Year 2019,
Volume: 14 Issue: 4, 207 - 217, 26.10.2019
Sibel Oğuzlar
,
Merve Zeyrek Ongun
Thanks
All authors would like to thank to Dokuz Eylul University, Center for Fabrication and Applications of Electronic Materials (EMUM) for XRD, XPS, SEM, and PL measurements.
References
- [1] Nault, L., Bouchab, L., Dupré-Crochet, S., Nüße, O., and Erard, M., (2016). Environmental Effects on Reactive Oxygen Species Detection—Learning from the Phagosome. Antioxidants & redox signaling, 25(10):564–576.
- [2] Ando, M., (2006). Recent Advances in Optochemical Sensors for the Detection of H2, O2, O3, CO, CO2 and H2O in Air. TrAC Trends in Analytical Chemistry, 25(10):937–948.
- [3] Hardy, M., Zielonka, J., Karoui, H., Sikora, A., Michalski, R., Podsiadły, R., Lopez, M., Vasquez-Vivar, J., Kalyanaraman, B., and Ouari, O., (2018). Detection and Characterization of Reactive Oxygen and Nitrogen Species in Biological Systems by Monitoring Species-Specific Products. Antioxidants & redox signaling, 28(15):1416–1432.
- [4] McNeil, C.J., Athey, D., and Ho, W.O., (1995). Direct Electron Transfer Bioelectronic Interfaces: Application to Clinical Analysis. Biosensors and Bioelectronics 10(1–2):75–83.
- [5] Wang, X. and Wolfbeis, O.S., (2015). Fiber-Optic Chemical Sensors and Biosensors (2013–2015). Analytical chemistry 88(1):203–227.
- [6] Raj, D.R., Prasanth, S., Vineeshkumar, T.V., and Sudarsanakumar, C., (2016). Surface Plasmon Resonance Based Fiber Optic Dopamine Sensor Using Green Synthesized Silver Nanoparticles. Sensors and Actuators B: Chemical 224, 600–606.
- [7] Degler, D., Barz, N., Dettinger, U., Peisert, H., Chasse, T., Weimar, U., and Barsan, N., (2016). Extending the Toolbox for Gas Sensor Research: Operando UV/Vis Diffuse Reflectance Spectroscopy on SnO2-Based Gas Sensors. Sensors and Actuators B: Chemical, 224, 256–259.
- [8] Imai, K., Okazaki, T., Hata, N., Taguchi, S., Sugawara, K., and Kuramitz, H., (2015).Simultaneous Multiselective Spectroelectrochemical Fiber-Optic Sensor: Demonstration of the Concept Using Methylene Blue and Ferrocyanide. Analytical chemistry, 87(4):2375–2382.
- [9] Yuan, Y., Guo, T., Qiu, X., Tang, J., Huang, Y., Zhuang, L., Zhou, S., Li, Z., Guan, B.O., and Zhang, X., (2016). Electrochemical Surface Plasmon Resonance Fiber-Optic Sensor: In Situ Detection of Electroactive Biofilms. Analytical chemistry 88(15):7609–7616.
- [10] Borisov, S.M., Alemayehu, A., and Ghosh, A., (2016). Osmium-Nitrido Corroles as NIR Indicators for Oxygen Sensors and Triplet Sensitizers for Organic Upconversion and Singlet Oxygen Generation. Journal of Materials Chemistry C, 4(24):5822–5828.
- [11] Liu, L., Wang, X., Hussain, F., Zeng, C., Wang, B., Li, Z., Kozin, I., and Wang, S., (2019). Multiresponsive Tetradentate Phosphorescent Metal Complexes as Highly Sensitive and Robust Luminescent Oxygen Sensors: Pd (II) Versus Pt (II) and 1, 2, 3-Triazolyl Versus 1, 2, 4-Triazolyl. ACS applied materials & interfaces, 11(13):12666–12674.
- [12] Medina-Rodríguez, S., Denisov, S.A., Cudré, Y., Male, L., Marín-Suárez, M., Fernández-Gutiérrez, A., Fernández-Sánchez, J.F., Tron, A., Jonusauskas, G., and Mcclenaghan, N.D., (2016). High Performance Optical Oxygen Sensors Based on Iridium Complexes Exhibiting Interchromophore Energy Shuttling. Analyst, 141(10):3090–3097.
- [13] Ongun, M.Z., Oter, O., Sabancı, G., Ertekin, K., and Çelik, E., (2013). Enhanced Stability of Ruthenium Complex in Ionic Liquid Doped Electrospun Fibers. Sensors and Actuators B: Chemical 183, 11–19.
- [14] Ye, J.W., Zhou, H.L., Liu, S.Y., Cheng, X.N., Lin, R.B., Qi, X.L., Zhang, J.P., and Chen, X.M., (2015). Encapsulating Pyrene in a Metal–Organic Zeolite for Optical Sensing of Molecular Oxygen. Chemistry of Materials 27(24):8255–8260.
- [15] Hurtubise, R.J., Ackerman, A.H., and Smith, B.W., (2001). Mechanistic Aspects of the Oxygen Quenching of the Solid-Matrix Phosphorescence of Perdeuterated Phenanthrene on Partially Hydrophobic Paper. Applied Spectroscopy, 55(4):490–495.
- [16] Topal, S.Z., Ongun, M.Z., Önal, E., Ertekin, K., and Hirel, C., (2017). Hyperporphyrin Effect on Oxygen Sensitivity of Free Meso-Tetraphenylporphyrins. Dyes and Pigments 144, 102–109.
- [17] Hosseini, M., Pur, M.R.K., Norouzi, P., Moghaddam, M.R., and Ganjali, M.R., (2017). An Enhanced Electrochemiluminescence Sensor Modified with a Ru (Bpy) 32+/Yb2O3 Nanoparticle/Nafion Composite for the Analysis of Methadone Samples. Materials Science and Engineering: C, 76, 483–489.
- [18] Ongun, M.Z., Oter, O., Sabanci, G., Ertekin, K., and Celik, E., (2013). Enhanced Stability of Ruthenium Complex in Ionic Liquid Doped Electrospun Fibers. Sensors and Actuators, B: Chemical 183, 11–19. https://doi.org/10.1016/j.snb.2013.03.060.
- [19] Jiang, Z., Yu, X., Zhai, S., and Hao, Y., (2017). Ratiometric Dissolved Oxygen Sensors Based on Ruthenium Complex Doped with Silver Nanoparticles. Sensors, 17(3):548-553.
- [20] Roche, P.J.R., Cheung, M.C.K., Yung, K.Y., Kirk, A.G., Chodavarpu, V.P., and Bright, F.V., (2010). Application of Gold Quenching of Luminescence to Improve Oxygen Sensing Using a Ruthenium (4, 7-Diphenyl-1, 10-Phenanthroline) 3Cl2: TEOS Thin Film. Sensors and Actuators B: Chemical, 147(2):581–586.
- [21] Ozturk, O., Oter, O., Yildirim, S., Subasi, E., Ertekin, K., Celik, E., and Temel, H., (2014). Tuning Oxygen Sensitivity of Ruthenium Complex Exploiting Silver Nanoparticles. Journal of Luminescence, 155, 191–197.
- [22] Ando, M., Kobayashi, T., and Haruta, M., (1997). Combined Effects of Small Gold Particles on the Optical Gas Sensing by Transition Metal Oxide Films. Catalysis Today, 36(1):135–141.
- [23] Valerini, D., Cretì, A., Caricato, A.P., Lomascolo, M., Rella, R., and Martino, M., (2010). Optical Gas Sensing through Nanostructured ZnO Films with Different Morphologies. Sensors and Actuators B: Chemical, 145(1):167–173.
- [24] Shi, C., Chen, Y., Liu, H., Cui, G., Ju, L., and Chen, L., (2016). Adsorption and Gas-Sensing Characteristics of a Stoichiometric α-Fe2O3 (001) Nano Thin Film for Carbon Dioxide and Carbon Monoxide with and without Pre-Adsorbed O 2. RSC Advances 6(5):3514–3525.
- [25] Cuong, N.D., Hoa, T.T., Khieu, D.Q., Hoa, N.D., and Van Hieu, N., (2012). Gas Sensor Based on Nanoporous Hematite Nanoparticles: Effect of Synthesis Pathways on Morphology and Gas Sensing Properties. Current Applied Physics 12(5):1355–1360.
- [26] Lin, Y., Xu, G., Wei, F., Zhang, A., Yang, J., and Hu, Q. (2016). Detection of CEA in Human Serum Using Surface-Enhanced Raman Spectroscopy Coupled with Antibody-Modified Au and γ-Fe2O3@ Au Nanoparticles. Journal of Pharmaceutical and Biomedical Analysis, 121, 135–140.
- [27] Singh, B.P., Kumar, A., Areizaga-Martinez, H.I., Vega-Olivencia, C.A., and Tomar, M.S., (2017). Synthesis, Characterization, and Electrocatalytic Ability of γ-Fe2O3 Nanoparticles for Sensing Acetaminophen. Indian Journal of Pure & Applied Physics (IJPAP), 55(10):722–728.
- [28] Moulder, J.F., (1995). Handbook of X-Ray Photoelectron Spectroscopy. Physical Electronics 230–232.
- [29] Long, N.V., Teranishi, T., Yang, Y., Thi, C.M., Cao, Y., Nogami, M., (2015). Iron Oxide Nanoparticles for next Generation Gas Sensors. International Journal of Metallurgical & Materials Engineering 2015.
- [30] Lakowicz, J.R., (2006). Principles of Fluorescence Spectroscopy, 2006. Springer Science+ Business Media, LLC.
Enhancement of Optical Oxygen Sensing Properties of [Ru(bpy)3]2+- Based Composites Along with Maghemite and Ionic Liquid
Year 2019,
Volume: 14 Issue: 4, 207 - 217, 26.10.2019
Sibel Oğuzlar
,
Merve Zeyrek Ongun
Abstract
In this study, we measured
oxygen-induced emission and decay-time data of tris(2,2′-bipyridyl)ruthenium(II)
chloride dye in the presence of additives, maghemite and ionic liquid,
1-butyl-3-methylimidazolium tetrafluoroborate. The fluorescent dye along with
the additives was embedded in ethylcellulose matrix that was used as supporting
material in form of thin-film and electrospun mat. The synthesized maghemite was
used to enhance the oxygen sensitivity and linear working range of the dye. Ionic
liquid (IL) was used to increase the stability and sensitivity of the sensing
fluorophore. Together with the additives ruthenium dye-based composites
exhibited higher Stern-Volmer constant (KSV), relative
signal change and
larger linear response. High relative signal change and KSV values mean that fluorophore
has a better oxygen gas sensitivity.Stern-Volmer values
of thin-film and microporous
mats were found 1.64×10−2 and 2.21×10−2,
the relative signal changes (I0/I) were calculated as 2.64 and
3.21, respectively. There is no previous work about the utilization of both
maghemite and ionic liquid additives together for the enhancement of oxygen
sensitivity of the ruthenium.
References
- [1] Nault, L., Bouchab, L., Dupré-Crochet, S., Nüße, O., and Erard, M., (2016). Environmental Effects on Reactive Oxygen Species Detection—Learning from the Phagosome. Antioxidants & redox signaling, 25(10):564–576.
- [2] Ando, M., (2006). Recent Advances in Optochemical Sensors for the Detection of H2, O2, O3, CO, CO2 and H2O in Air. TrAC Trends in Analytical Chemistry, 25(10):937–948.
- [3] Hardy, M., Zielonka, J., Karoui, H., Sikora, A., Michalski, R., Podsiadły, R., Lopez, M., Vasquez-Vivar, J., Kalyanaraman, B., and Ouari, O., (2018). Detection and Characterization of Reactive Oxygen and Nitrogen Species in Biological Systems by Monitoring Species-Specific Products. Antioxidants & redox signaling, 28(15):1416–1432.
- [4] McNeil, C.J., Athey, D., and Ho, W.O., (1995). Direct Electron Transfer Bioelectronic Interfaces: Application to Clinical Analysis. Biosensors and Bioelectronics 10(1–2):75–83.
- [5] Wang, X. and Wolfbeis, O.S., (2015). Fiber-Optic Chemical Sensors and Biosensors (2013–2015). Analytical chemistry 88(1):203–227.
- [6] Raj, D.R., Prasanth, S., Vineeshkumar, T.V., and Sudarsanakumar, C., (2016). Surface Plasmon Resonance Based Fiber Optic Dopamine Sensor Using Green Synthesized Silver Nanoparticles. Sensors and Actuators B: Chemical 224, 600–606.
- [7] Degler, D., Barz, N., Dettinger, U., Peisert, H., Chasse, T., Weimar, U., and Barsan, N., (2016). Extending the Toolbox for Gas Sensor Research: Operando UV/Vis Diffuse Reflectance Spectroscopy on SnO2-Based Gas Sensors. Sensors and Actuators B: Chemical, 224, 256–259.
- [8] Imai, K., Okazaki, T., Hata, N., Taguchi, S., Sugawara, K., and Kuramitz, H., (2015).Simultaneous Multiselective Spectroelectrochemical Fiber-Optic Sensor: Demonstration of the Concept Using Methylene Blue and Ferrocyanide. Analytical chemistry, 87(4):2375–2382.
- [9] Yuan, Y., Guo, T., Qiu, X., Tang, J., Huang, Y., Zhuang, L., Zhou, S., Li, Z., Guan, B.O., and Zhang, X., (2016). Electrochemical Surface Plasmon Resonance Fiber-Optic Sensor: In Situ Detection of Electroactive Biofilms. Analytical chemistry 88(15):7609–7616.
- [10] Borisov, S.M., Alemayehu, A., and Ghosh, A., (2016). Osmium-Nitrido Corroles as NIR Indicators for Oxygen Sensors and Triplet Sensitizers for Organic Upconversion and Singlet Oxygen Generation. Journal of Materials Chemistry C, 4(24):5822–5828.
- [11] Liu, L., Wang, X., Hussain, F., Zeng, C., Wang, B., Li, Z., Kozin, I., and Wang, S., (2019). Multiresponsive Tetradentate Phosphorescent Metal Complexes as Highly Sensitive and Robust Luminescent Oxygen Sensors: Pd (II) Versus Pt (II) and 1, 2, 3-Triazolyl Versus 1, 2, 4-Triazolyl. ACS applied materials & interfaces, 11(13):12666–12674.
- [12] Medina-Rodríguez, S., Denisov, S.A., Cudré, Y., Male, L., Marín-Suárez, M., Fernández-Gutiérrez, A., Fernández-Sánchez, J.F., Tron, A., Jonusauskas, G., and Mcclenaghan, N.D., (2016). High Performance Optical Oxygen Sensors Based on Iridium Complexes Exhibiting Interchromophore Energy Shuttling. Analyst, 141(10):3090–3097.
- [13] Ongun, M.Z., Oter, O., Sabancı, G., Ertekin, K., and Çelik, E., (2013). Enhanced Stability of Ruthenium Complex in Ionic Liquid Doped Electrospun Fibers. Sensors and Actuators B: Chemical 183, 11–19.
- [14] Ye, J.W., Zhou, H.L., Liu, S.Y., Cheng, X.N., Lin, R.B., Qi, X.L., Zhang, J.P., and Chen, X.M., (2015). Encapsulating Pyrene in a Metal–Organic Zeolite for Optical Sensing of Molecular Oxygen. Chemistry of Materials 27(24):8255–8260.
- [15] Hurtubise, R.J., Ackerman, A.H., and Smith, B.W., (2001). Mechanistic Aspects of the Oxygen Quenching of the Solid-Matrix Phosphorescence of Perdeuterated Phenanthrene on Partially Hydrophobic Paper. Applied Spectroscopy, 55(4):490–495.
- [16] Topal, S.Z., Ongun, M.Z., Önal, E., Ertekin, K., and Hirel, C., (2017). Hyperporphyrin Effect on Oxygen Sensitivity of Free Meso-Tetraphenylporphyrins. Dyes and Pigments 144, 102–109.
- [17] Hosseini, M., Pur, M.R.K., Norouzi, P., Moghaddam, M.R., and Ganjali, M.R., (2017). An Enhanced Electrochemiluminescence Sensor Modified with a Ru (Bpy) 32+/Yb2O3 Nanoparticle/Nafion Composite for the Analysis of Methadone Samples. Materials Science and Engineering: C, 76, 483–489.
- [18] Ongun, M.Z., Oter, O., Sabanci, G., Ertekin, K., and Celik, E., (2013). Enhanced Stability of Ruthenium Complex in Ionic Liquid Doped Electrospun Fibers. Sensors and Actuators, B: Chemical 183, 11–19. https://doi.org/10.1016/j.snb.2013.03.060.
- [19] Jiang, Z., Yu, X., Zhai, S., and Hao, Y., (2017). Ratiometric Dissolved Oxygen Sensors Based on Ruthenium Complex Doped with Silver Nanoparticles. Sensors, 17(3):548-553.
- [20] Roche, P.J.R., Cheung, M.C.K., Yung, K.Y., Kirk, A.G., Chodavarpu, V.P., and Bright, F.V., (2010). Application of Gold Quenching of Luminescence to Improve Oxygen Sensing Using a Ruthenium (4, 7-Diphenyl-1, 10-Phenanthroline) 3Cl2: TEOS Thin Film. Sensors and Actuators B: Chemical, 147(2):581–586.
- [21] Ozturk, O., Oter, O., Yildirim, S., Subasi, E., Ertekin, K., Celik, E., and Temel, H., (2014). Tuning Oxygen Sensitivity of Ruthenium Complex Exploiting Silver Nanoparticles. Journal of Luminescence, 155, 191–197.
- [22] Ando, M., Kobayashi, T., and Haruta, M., (1997). Combined Effects of Small Gold Particles on the Optical Gas Sensing by Transition Metal Oxide Films. Catalysis Today, 36(1):135–141.
- [23] Valerini, D., Cretì, A., Caricato, A.P., Lomascolo, M., Rella, R., and Martino, M., (2010). Optical Gas Sensing through Nanostructured ZnO Films with Different Morphologies. Sensors and Actuators B: Chemical, 145(1):167–173.
- [24] Shi, C., Chen, Y., Liu, H., Cui, G., Ju, L., and Chen, L., (2016). Adsorption and Gas-Sensing Characteristics of a Stoichiometric α-Fe2O3 (001) Nano Thin Film for Carbon Dioxide and Carbon Monoxide with and without Pre-Adsorbed O 2. RSC Advances 6(5):3514–3525.
- [25] Cuong, N.D., Hoa, T.T., Khieu, D.Q., Hoa, N.D., and Van Hieu, N., (2012). Gas Sensor Based on Nanoporous Hematite Nanoparticles: Effect of Synthesis Pathways on Morphology and Gas Sensing Properties. Current Applied Physics 12(5):1355–1360.
- [26] Lin, Y., Xu, G., Wei, F., Zhang, A., Yang, J., and Hu, Q. (2016). Detection of CEA in Human Serum Using Surface-Enhanced Raman Spectroscopy Coupled with Antibody-Modified Au and γ-Fe2O3@ Au Nanoparticles. Journal of Pharmaceutical and Biomedical Analysis, 121, 135–140.
- [27] Singh, B.P., Kumar, A., Areizaga-Martinez, H.I., Vega-Olivencia, C.A., and Tomar, M.S., (2017). Synthesis, Characterization, and Electrocatalytic Ability of γ-Fe2O3 Nanoparticles for Sensing Acetaminophen. Indian Journal of Pure & Applied Physics (IJPAP), 55(10):722–728.
- [28] Moulder, J.F., (1995). Handbook of X-Ray Photoelectron Spectroscopy. Physical Electronics 230–232.
- [29] Long, N.V., Teranishi, T., Yang, Y., Thi, C.M., Cao, Y., Nogami, M., (2015). Iron Oxide Nanoparticles for next Generation Gas Sensors. International Journal of Metallurgical & Materials Engineering 2015.
- [30] Lakowicz, J.R., (2006). Principles of Fluorescence Spectroscopy, 2006. Springer Science+ Business Media, LLC.