BibTex RIS Cite

POLİNOM FONKSİYONLAR İÇİN BAZI EŞİTSİZLİKLER

Year 2013, Volume: 8 Issue: 2, 32 - 47, 01.03.2013

Abstract

Bu çalışmada, önce ,12, de birim diskte polinomların maksimum modülleri için ispatlanan eşitsizliğin, herhangi bir R yarıçaplı disk için de geçerli olduğu gösterildi. z=0 noktası polinomların katlı kökü olması durumunda , ve f(0)=0 , f(a)=a^q,f(-a)=-a^q olan f:C---C ünivalent polinomlar için, bu eşitsizliğin farklı formları elde edilmiştir. Ayrıca ,ünivalent polinom fonksiyonlar için bu eşitsizliklerden tamamen farklı yeni eşitsizlikler hem birim diskte hem de herhangi bir R yarıçaplı bir diskte elde edilmiştir.

References

  • Ankeny, N.C. and Rivlin, T.J., (1955). On a theorem of S. Brenstein, Pasific J. Math., 849-852.
  • Avcı, Y. and Zlotkiewicz, E., (1997). On univalent functions with three preassigend values, Tr. J. of Mathematics, 21, 15-23.
  • Çelik, A., (2012). New inequalities for Maximum Modulus Values of polynomial functions, Hacettepe Journal of Mathematics and Statistics, volume 41 (2), 255-263.
  • Çelik, A., (2009). On the “univalent functions with three preassigend Values and automorphisms of an open disc”,E-Journal New World Sciences Academy,volume 4,number 2, 36-41.
  • Çelik, A., (2004). Maximum module values of polynomials on z R (R
  • 1), Üniv. Beograd, publ. Elektrotehn. Fak.,ser. Mat.15,1-6.
  • Çelik, A., (1997). A note on Mohr’s paper, Üniv. Beograd, publ. Elektrotehn. Fak.,ser. Mat.8, 51-54.
  • Deshpande, J.V., (1986). Complex Analysis, Tata MCGraw-Hill Publising Company, New Delhi.
  • Duren, P.L., (1983). Univalent functions Newyork-Berlin, Springer Verlag.
  • Milonovic’ G.V., Mitrinovic’ D.S., and Rassias, M.TH., (1994). Extremal Problems, Inequalities Zeros ,Word Scientific Publ. Co., Singapore, New Jersey, London.
  • Mir, A., Devan, K.K., and Sing, N., (2009). Some inequalities concerning The rate of growty of polinomials, Turk. J. Math., 33, 239-247.
  • Mohr, E., (1992). Bemerkung Zu der arbeit Van A.M. Ostrowski Notiz uber Maximalwerte von polynomen auf dem einheitskreis Üniv. Beograd, publ. Elektrotehn.Fak,ser. Mat.3, 3-4.
  • Ostrowski, A.M., (1979). Notiz uber Maximalwerte von polynomen auf dem einheitskreis, Üniv. Beograd, publ.Elektrotehn. Fak., ser. Mat. Fiz.,No 634-637, 55-56.
  • Rassias, M.TH., (1986). A new inequality for complex-valued polynomial functions, Proc. Amer. Math. Soc. 9, 296-298.

SOME INEQUALITIES FOR POLYNOMIAL FUNCTIONS

Year 2013, Volume: 8 Issue: 2, 32 - 47, 01.03.2013

Abstract

In this work, we first show that the inequality, established in the unit disc for maximum modulus of polynomial functions ,12, also holds for any disc of radius R . In the case where polynomials have z=0 as a multiple root, and also for the univalent polynomial functions f:C---C with f(0)=0 ,f(a=a^q , f(-a) =-a^q ,we obtain different forms of this inequality. Then we attain quite distinct new inequalities for univalent polynomial functions in both the unit disc and disc of an arbitrary radius R.

References

  • Ankeny, N.C. and Rivlin, T.J., (1955). On a theorem of S. Brenstein, Pasific J. Math., 849-852.
  • Avcı, Y. and Zlotkiewicz, E., (1997). On univalent functions with three preassigend values, Tr. J. of Mathematics, 21, 15-23.
  • Çelik, A., (2012). New inequalities for Maximum Modulus Values of polynomial functions, Hacettepe Journal of Mathematics and Statistics, volume 41 (2), 255-263.
  • Çelik, A., (2009). On the “univalent functions with three preassigend Values and automorphisms of an open disc”,E-Journal New World Sciences Academy,volume 4,number 2, 36-41.
  • Çelik, A., (2004). Maximum module values of polynomials on z R (R
  • 1), Üniv. Beograd, publ. Elektrotehn. Fak.,ser. Mat.15,1-6.
  • Çelik, A., (1997). A note on Mohr’s paper, Üniv. Beograd, publ. Elektrotehn. Fak.,ser. Mat.8, 51-54.
  • Deshpande, J.V., (1986). Complex Analysis, Tata MCGraw-Hill Publising Company, New Delhi.
  • Duren, P.L., (1983). Univalent functions Newyork-Berlin, Springer Verlag.
  • Milonovic’ G.V., Mitrinovic’ D.S., and Rassias, M.TH., (1994). Extremal Problems, Inequalities Zeros ,Word Scientific Publ. Co., Singapore, New Jersey, London.
  • Mir, A., Devan, K.K., and Sing, N., (2009). Some inequalities concerning The rate of growty of polinomials, Turk. J. Math., 33, 239-247.
  • Mohr, E., (1992). Bemerkung Zu der arbeit Van A.M. Ostrowski Notiz uber Maximalwerte von polynomen auf dem einheitskreis Üniv. Beograd, publ. Elektrotehn.Fak,ser. Mat.3, 3-4.
  • Ostrowski, A.M., (1979). Notiz uber Maximalwerte von polynomen auf dem einheitskreis, Üniv. Beograd, publ.Elektrotehn. Fak., ser. Mat. Fiz.,No 634-637, 55-56.
  • Rassias, M.TH., (1986). A new inequality for complex-valued polynomial functions, Proc. Amer. Math. Soc. 9, 296-298.
There are 14 citations in total.

Details

Primary Language Turkish
Journal Section Physics
Authors

Adem Çelik This is me

Publication Date March 1, 2013
Published in Issue Year 2013 Volume: 8 Issue: 2

Cite

APA Çelik, A. (2013). SOME INEQUALITIES FOR POLYNOMIAL FUNCTIONS. Physical Sciences, 8(2), 32-47. https://doi.org/10.12739/NWSA.2013.8.2.3A0064
AMA Çelik A. SOME INEQUALITIES FOR POLYNOMIAL FUNCTIONS. Physical Sciences. March 2013;8(2):32-47. doi:10.12739/NWSA.2013.8.2.3A0064
Chicago Çelik, Adem. “SOME INEQUALITIES FOR POLYNOMIAL FUNCTIONS”. Physical Sciences 8, no. 2 (March 2013): 32-47. https://doi.org/10.12739/NWSA.2013.8.2.3A0064.
EndNote Çelik A (March 1, 2013) SOME INEQUALITIES FOR POLYNOMIAL FUNCTIONS. Physical Sciences 8 2 32–47.
IEEE A. Çelik, “SOME INEQUALITIES FOR POLYNOMIAL FUNCTIONS”, Physical Sciences, vol. 8, no. 2, pp. 32–47, 2013, doi: 10.12739/NWSA.2013.8.2.3A0064.
ISNAD Çelik, Adem. “SOME INEQUALITIES FOR POLYNOMIAL FUNCTIONS”. Physical Sciences 8/2 (March 2013), 32-47. https://doi.org/10.12739/NWSA.2013.8.2.3A0064.
JAMA Çelik A. SOME INEQUALITIES FOR POLYNOMIAL FUNCTIONS. Physical Sciences. 2013;8:32–47.
MLA Çelik, Adem. “SOME INEQUALITIES FOR POLYNOMIAL FUNCTIONS”. Physical Sciences, vol. 8, no. 2, 2013, pp. 32-47, doi:10.12739/NWSA.2013.8.2.3A0064.
Vancouver Çelik A. SOME INEQUALITIES FOR POLYNOMIAL FUNCTIONS. Physical Sciences. 2013;8(2):32-47.