BibTex RIS Cite

A NOTE ON THE GROWTH OF POLYNOMIALS

Year 2016, Volume: 11 Issue: 2, 10 - 16, 11.04.2016

Abstract

Let   z    be a complex variable, p a complex polynomial,and let M(p,R)=maxIp(z)I on IzI=R , M(p,1)=maxIp(z)I on IzI=1 .In this work,we investigate some new inequalities between M(p,R) and M(p^n,1)as well as between M(p^n ,R) and M(p,1) where  n>2 or n=2 is a natural number.

References

  • Aziz, A., (1987). Growty of Polynomials Whose Zeros are within or Outside a Circle, Bul. Austral. Math. Soc. Vol.35,
  • -256.
  • Aziz, A. and Dawood, M., (1988). Inequalities for a Polynomial and Its Derivative, J. Approx. Theory, 53, 155-162.
  • Aziz, A. and Mohammad, O.G., (1981). Growth of Polynomials With
  • Zeros Outside A Circle, Proc. Amer. Math. Soc. 81, 549-553.
  • Çelik, A., (2013). Some Inequalities for Polynomial Functions, Physical Sciences (ISSN 1308-7304), Volume:8, Number:2, 32-47. DOI:10.12739/NWSA.2013.8.2.3A0064.
  • Desphande, J.V., (1986). Complex Analysis (Tata McGraw- Hill
  • Publishing Company, New Delhi.
  • Rassias, M.Th., (1986). A New Inequality for Complex-Valued Polynomial Functions, Proc. Amer. Math. Soc. 9, 296-298
  • Ankeny, N.C. and Rivlin, T.J., (1955). “On Theorem of S. Bernstein”, Pacific J. Math. 5, 849-852.
  • Jain, V.K., (1998), Certain Interesting Implications of T.J. Rivlin’s Result On Maximum Modulus of A Polynomial, Glasnic
  • Matematicki, Vol. 33, 33-36.
  • Jain, V.K., (1999). On Polynomials Having Zeros In Closed
  • Exterior or Closed Interior of a Circle, Indian J. Pure and
  • Appl. Math., 153-159.

POLİNOMLARIN BÜYÜTÜLMESİ ÜZERİNE BAZI NOTLAR

Year 2016, Volume: 11 Issue: 2, 10 - 16, 11.04.2016

Abstract

zbir kompleks değişken,pbir kompleks polinom ve n2bir doğal

References

  • Aziz, A., (1987). Growty of Polynomials Whose Zeros are within or Outside a Circle, Bul. Austral. Math. Soc. Vol.35,
  • -256.
  • Aziz, A. and Dawood, M., (1988). Inequalities for a Polynomial and Its Derivative, J. Approx. Theory, 53, 155-162.
  • Aziz, A. and Mohammad, O.G., (1981). Growth of Polynomials With
  • Zeros Outside A Circle, Proc. Amer. Math. Soc. 81, 549-553.
  • Çelik, A., (2013). Some Inequalities for Polynomial Functions, Physical Sciences (ISSN 1308-7304), Volume:8, Number:2, 32-47. DOI:10.12739/NWSA.2013.8.2.3A0064.
  • Desphande, J.V., (1986). Complex Analysis (Tata McGraw- Hill
  • Publishing Company, New Delhi.
  • Rassias, M.Th., (1986). A New Inequality for Complex-Valued Polynomial Functions, Proc. Amer. Math. Soc. 9, 296-298
  • Ankeny, N.C. and Rivlin, T.J., (1955). “On Theorem of S. Bernstein”, Pacific J. Math. 5, 849-852.
  • Jain, V.K., (1998), Certain Interesting Implications of T.J. Rivlin’s Result On Maximum Modulus of A Polynomial, Glasnic
  • Matematicki, Vol. 33, 33-36.
  • Jain, V.K., (1999). On Polynomials Having Zeros In Closed
  • Exterior or Closed Interior of a Circle, Indian J. Pure and
  • Appl. Math., 153-159.
There are 15 citations in total.

Details

Primary Language English
Journal Section Mathematics
Authors

Adem Çelik

Publication Date April 11, 2016
Published in Issue Year 2016 Volume: 11 Issue: 2

Cite

APA Çelik, A. (2016). A NOTE ON THE GROWTH OF POLYNOMIALS. Physical Sciences, 11(2), 10-16.
AMA Çelik A. A NOTE ON THE GROWTH OF POLYNOMIALS. Physical Sciences. April 2016;11(2):10-16.
Chicago Çelik, Adem. “A NOTE ON THE GROWTH OF POLYNOMIALS”. Physical Sciences 11, no. 2 (April 2016): 10-16.
EndNote Çelik A (April 1, 2016) A NOTE ON THE GROWTH OF POLYNOMIALS. Physical Sciences 11 2 10–16.
IEEE A. Çelik, “A NOTE ON THE GROWTH OF POLYNOMIALS”, Physical Sciences, vol. 11, no. 2, pp. 10–16, 2016.
ISNAD Çelik, Adem. “A NOTE ON THE GROWTH OF POLYNOMIALS”. Physical Sciences 11/2 (April 2016), 10-16.
JAMA Çelik A. A NOTE ON THE GROWTH OF POLYNOMIALS. Physical Sciences. 2016;11:10–16.
MLA Çelik, Adem. “A NOTE ON THE GROWTH OF POLYNOMIALS”. Physical Sciences, vol. 11, no. 2, 2016, pp. 10-16.
Vancouver Çelik A. A NOTE ON THE GROWTH OF POLYNOMIALS. Physical Sciences. 2016;11(2):10-6.