BibTex RIS Cite

YANGINA KARŞI DAHA İYİ PERFORMANS GÖSTEREN BETON TASARIMI

Year 2014, Volume: 9 Issue: 3, 31 - 42, 01.04.2014

Abstract

Yangınlarda can ve mal kayıplarını en aza indirebilmek için, yangının oluştuğu mekÃÆ'¢nının terk edilmesine olanak sağlayacak sürede, yapının taşıyıcılığının sağlanması ve çökmesinin engellenmesi yönünde taşıyıcı sistem oluşturulmalıdır. Ülkemizdeki yapıların çoğunun betonarme olduğu düşünülecek olursa, betonun yangından kaçış süresi boyunca bütünlüğünü koruması sağlanmalıdır. Yangına dayanıklı kompartımanların oluşturulması, sıcaklığın beton bileşenleri üzerinde oluşturduğu değişimlerin belirlenerek, zayıf noktaların iyileştirilmesi yolu ile gerçekleştirilebilir. Betonun içine ilave edilen puzzolan katkılar yolu ile yangın dayanımın arttırdığı bilinmektedir. Çalışmada, bu katkıların hangi sıcaklıkta nasıl olumlu davranışların oluştuğu incelenerek, yangın kompatımanlarının oluşturulmasında kullanılacak en ideal beton bileşimi değerlendirilmiştir.

References

  • Grainger, B.N., (1980). Concrete at High Temperatures. Central Electricity Research Laboratories, UK.
  • Çelebi, M.R. ve Akıncıtürk, N., (2003). Yangın. İstanbul Kültür Üniversitesi Yayınları, İstanbul.
  • Ghosh, S. and Nasser K.W., (1996). Effects of High Temperature and Pressure on Strength and Elasticity of Lignite Fly Ash and Silica Fume. Concrete Materials Journal: 1(93)401-50. DOI: 10.14359/9795.
  • Harper, C.A., (2004). Handbook of Building Materials for Fire Protection. McGraw- Hill.
  • Hertz, K.D., (1992). İnvestigations on Silica Fume Concretes at Elavated Tempetures. ACI: 4(89), 345-347, DOI:10.14359/9750.
  • Hertz, K.D., (1984). Heat İnduced Explosion of Dence Concretes. İnstute of Building Design. Technical University of Denmark. Report no: 166.
  • Khoury, G.A., (1992). Design of Concrete for Beter Performance in Fire. C438/042.
  • Kordina, K., Wydra, W., and Ehm, C., (1992). Analysis of the Developing Damage of Concrete due to Heating and Cooling, Materials and design Against Fire. Proceedings of İnstitution of Mechanical Engineers. Bridge Walk London.
  • Nasser, K.W. and Marzouk, H.M., (1979). Properties of Mass Concrete Containing Flasy Ash at High Tempetures. ACI Mater. J.: 4(76), 537-551, DOI: 10.14359/6958.
  • Noumowe, A., Carre, H., Daoud, A., and Toutanji, H., (2006). High-Strength Self-Compacting Concrete Exposed to Fire Test. Journal of Materials in Civil Engineering: 6(18), 754. DOI: 10.1061.
  • Poon, C., Azhar, S., Anson, M., and Wong, Y., (2001). “Strength and Durability Recovery of Fire-Damaged Concrete after Post Fire Curing”, Cement and Concrete Composites, 31(130), 1318.
  • Sava, A., Manita, P., and Sideris, K.K., (2005). Influence of Elevated Temperatures on The Mechanical Properties of Blended Cement Concretes Prepared with Limestone and Siliceous Aggregates. Cement and Concrete Composites: 2(27), 239-248.
  • Sullivan, P.J.E. and Sharshar, R., (1992). Performance of Concrete at Elevated Temperatures: Fire Technology: 3(28), 2009- 2016, DOI: 10.1007/BF01857693.
  • Wong, Y.L., Xu, Poon C.S., and Anso, M., (2003). Influence of PFA on Cracing of Concrete and Cement Paste after Exposure to high Temperature. Cement and Concrete Research: 12(33), 1065- 1073.
  • Xu, Y., Wong, Y.L., Poon, C.S., and Anson, M., (2001). Impact of High Temperature on PFA. Cement and Concrete Research: 7(31), 1065-1073.
  • Yu, X., Wong, Y.L., and Anson, M., (2000). Damage to PFA Concrete Subceted to high Tempetures. Prooceedings of İnternational Symposium on High Performance Concrete Workability, Strength and Durability, 1093-1100, Hong Kong.

FIRE RESISTANT CONCRETE DESIGN

Year 2014, Volume: 9 Issue: 3, 31 - 42, 01.04.2014

Abstract

To minimize loss of life and property, structure of building should be established to allow time for evacuation from place location of the fire and to provide the structure and prevent the collapse of buildings having high fire risk rate. Considered most of buildings made by concrete in our country, integrity of concrete must be provided during the time period escape from fire. Particularly, buildings and fire compartments having high fire risk, must be designed to provide high strength and to minimize the loss of goods. Forming fireproof compartments may be accomplished by , treatment of the weak points and determinating temperature changes on the concrete components. fire resistance of concrete increased by adding puzzolan addivities. In the study, behavior of concrete exanimate at different temperatures and optimal concrete composition evaluated.

References

  • Grainger, B.N., (1980). Concrete at High Temperatures. Central Electricity Research Laboratories, UK.
  • Çelebi, M.R. ve Akıncıtürk, N., (2003). Yangın. İstanbul Kültür Üniversitesi Yayınları, İstanbul.
  • Ghosh, S. and Nasser K.W., (1996). Effects of High Temperature and Pressure on Strength and Elasticity of Lignite Fly Ash and Silica Fume. Concrete Materials Journal: 1(93)401-50. DOI: 10.14359/9795.
  • Harper, C.A., (2004). Handbook of Building Materials for Fire Protection. McGraw- Hill.
  • Hertz, K.D., (1992). İnvestigations on Silica Fume Concretes at Elavated Tempetures. ACI: 4(89), 345-347, DOI:10.14359/9750.
  • Hertz, K.D., (1984). Heat İnduced Explosion of Dence Concretes. İnstute of Building Design. Technical University of Denmark. Report no: 166.
  • Khoury, G.A., (1992). Design of Concrete for Beter Performance in Fire. C438/042.
  • Kordina, K., Wydra, W., and Ehm, C., (1992). Analysis of the Developing Damage of Concrete due to Heating and Cooling, Materials and design Against Fire. Proceedings of İnstitution of Mechanical Engineers. Bridge Walk London.
  • Nasser, K.W. and Marzouk, H.M., (1979). Properties of Mass Concrete Containing Flasy Ash at High Tempetures. ACI Mater. J.: 4(76), 537-551, DOI: 10.14359/6958.
  • Noumowe, A., Carre, H., Daoud, A., and Toutanji, H., (2006). High-Strength Self-Compacting Concrete Exposed to Fire Test. Journal of Materials in Civil Engineering: 6(18), 754. DOI: 10.1061.
  • Poon, C., Azhar, S., Anson, M., and Wong, Y., (2001). “Strength and Durability Recovery of Fire-Damaged Concrete after Post Fire Curing”, Cement and Concrete Composites, 31(130), 1318.
  • Sava, A., Manita, P., and Sideris, K.K., (2005). Influence of Elevated Temperatures on The Mechanical Properties of Blended Cement Concretes Prepared with Limestone and Siliceous Aggregates. Cement and Concrete Composites: 2(27), 239-248.
  • Sullivan, P.J.E. and Sharshar, R., (1992). Performance of Concrete at Elevated Temperatures: Fire Technology: 3(28), 2009- 2016, DOI: 10.1007/BF01857693.
  • Wong, Y.L., Xu, Poon C.S., and Anso, M., (2003). Influence of PFA on Cracing of Concrete and Cement Paste after Exposure to high Temperature. Cement and Concrete Research: 12(33), 1065- 1073.
  • Xu, Y., Wong, Y.L., Poon, C.S., and Anson, M., (2001). Impact of High Temperature on PFA. Cement and Concrete Research: 7(31), 1065-1073.
  • Yu, X., Wong, Y.L., and Anson, M., (2000). Damage to PFA Concrete Subceted to high Tempetures. Prooceedings of İnternational Symposium on High Performance Concrete Workability, Strength and Durability, 1093-1100, Hong Kong.
There are 16 citations in total.

Details

Primary Language Turkish
Journal Section Electrical Machines
Authors

Zuhal Şimşek This is me

Publication Date April 1, 2014
Published in Issue Year 2014 Volume: 9 Issue: 3

Cite

APA Şimşek, Z. (2014). FIRE RESISTANT CONCRETE DESIGN. Technological Applied Sciences, 9(3), 31-42. https://doi.org/10.12739/NWSA.2014.9.3.2A0087
AMA Şimşek Z. FIRE RESISTANT CONCRETE DESIGN. Technological Applied Sciences. April 2014;9(3):31-42. doi:10.12739/NWSA.2014.9.3.2A0087
Chicago Şimşek, Zuhal. “FIRE RESISTANT CONCRETE DESIGN”. Technological Applied Sciences 9, no. 3 (April 2014): 31-42. https://doi.org/10.12739/NWSA.2014.9.3.2A0087.
EndNote Şimşek Z (April 1, 2014) FIRE RESISTANT CONCRETE DESIGN. Technological Applied Sciences 9 3 31–42.
IEEE Z. Şimşek, “FIRE RESISTANT CONCRETE DESIGN”, Technological Applied Sciences, vol. 9, no. 3, pp. 31–42, 2014, doi: 10.12739/NWSA.2014.9.3.2A0087.
ISNAD Şimşek, Zuhal. “FIRE RESISTANT CONCRETE DESIGN”. Technological Applied Sciences 9/3 (April 2014), 31-42. https://doi.org/10.12739/NWSA.2014.9.3.2A0087.
JAMA Şimşek Z. FIRE RESISTANT CONCRETE DESIGN. Technological Applied Sciences. 2014;9:31–42.
MLA Şimşek, Zuhal. “FIRE RESISTANT CONCRETE DESIGN”. Technological Applied Sciences, vol. 9, no. 3, 2014, pp. 31-42, doi:10.12739/NWSA.2014.9.3.2A0087.
Vancouver Şimşek Z. FIRE RESISTANT CONCRETE DESIGN. Technological Applied Sciences. 2014;9(3):31-42.