Research Article
BibTex RIS Cite

DETERMINATION OF INHIBITION EFFECTS OF FRUIT CONCENTRATED GOJI BERRIES (Lycium barbarum L., Solanaceae) TO ELECTROCHEMICAL BEHAVIOUR OF THE COPPER IN CHLORIDE MEDIUM (pH=8.0)

Year 2017, Volume: 12 Issue: 1, 25 - 37, 05.01.2017
https://doi.org/10.12739/NWSA.2017.12.1.2A0109

Abstract

In this study, the effect of Lycium barbarum L.,in the corrosion behaviour of copper has been investigated in 3.5% NaCl solution (pH=8.0) using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Current-potential curve and Nyquist diagrams were obtained in different concentrations of Lycium barbarum. The surface morphology of copper after their exposure to 3.5% NaCl solution with and without of Lycium barbarum was examined by scanning electron microscopy (SEM). The obtained results show that, Lycium barbarum inhibits corrosion of copper in 3.5% NaCl solution. Inhibition activity was determined to increase with the concentration of Lycium barbarum. 

References

  • 1. Erbil, M., (2012). “Korozyon, İlkeler-Önlemler”, Korozyon Derneği Yayını, Ankara.
  • 2. Crundwell, F.K., (1992).“The anodic dissolution of copper in hydrochloric acid solutions”, Electrochim. Acta., Vol:37, No:15, pp:2707-2714.
  • 3. Erbil, M., (1987). “Alternatif Akım (A.C.) İmpedansı Yöntemiyle Korozyon Hızı Belirlenmesi”, Doğa, Cilt:3, Sayfa:100-111.
  • 4. Kılınççeker, G., (2008). “The effect of acetate ions on electrochemical behavior of brass in chloride solutions”, Colloids and Surfaces A:Physicochemical and Engineering Aspects, Vol:329, pp:112-118.
  • 5. Kılınççeker, G., Yazıcı, B., Yılmaz, A.B. and Erbil, M., (2008). “The effect of phosphate ions on the electrochemical behavior of copper in sulphate solutions”, British Corrosion Journal, Vol:37, pp:23-30.
  • 6. Kılınççeker G., Doğan T.,(2016). “The influences of glucose on corrosion behaviour of copper in chloride solution”, Protection of Metals and Physical Chemistry of Surfaces, Vol:52,No:5, pp:910–920.
  • 7. Kılınççeker, G., Menekşe C., (2015). “The Effect of Acetate Ions on the Corrosion of Reinforcing Steel in Chloride Environments”. Protection of Metals and Physical Chemistry of Surfaces, Vol:51,No:4, pp: 659–666.
  • 8. Kılınççeker G., Celik S.,(2013).“Electrochemical adsorption properties and inhibition of copper corrosion in chloride solutions by ascorbic acid: experimental and theoretical investigation”. Ionics, Vol:19, No:11, pp: 1655-1662.
  • 9. Stern, M., Geary, A.L.,(1957). J. Electrochem. Soc. Vol:104, p:56.
  • 10. Sankarapapavınasam, S. and Ahmed, M.F.,(1992). “Benzenethiols as inhibitors for the corrosion of copper”, J. Appl. Electrochem., Vol:22, No:4, pp:390-395.
  • 11. Kılınççeker, G. and Erbil, M.,(2010). “The effect of phosphate ions on the electrochemical behaviour of brass in sulphate solutions”, Mater. Chem. Phys., 2010, Vol:119, No:1-2, pp:30-39.
  • 12. Crousier, J., Pardessus, L. and Crousier, J.-P.,(1988). “Voltammetry study of copper in chloride solution”, Electrochim. Acta., Vol:33, No:8, pp:1039-1042.
  • 13. Bockris, J.O.M. and Reddy, A.K.N., (1977). “Modern Electrochemistry”, Vol.2, Plenum Press, New York.
  • 14. Abd El-Maksoud, S.A., and Fouda, A.S., (2005). “Some Pyridine Derivatives as Corrosion Inhibitors for Carbon Steel in Acidic Medium”, Materials Chemistry and Physics, Vol:93, pp:84-90.
  • 15. Crundwell, F.K., (1992).“The anodic dissolution of copper in hydrochloric acid solutions”, Electrochim. Acta., Vol:37, No:15, pp:2707-2714.
  • 16. Rozenfeld, I.L. and Hardin, R., (1981). “Corrosion inhibitors”, McGraw-Hill, New York.
  • 17. Pourbaix, M., (1966). “Atlas of Electrochemical Aqueous Solutions”, Pergamon Press, New York pp:384–392.
  • 18. Özcan, M., Dehri, İ. and Erbil, M., (2004). “Organic Sulphur-containing Compounds as Corrosion Inhibitors for Mild Steel in Acidic Media: Correlation Between Inhibition Efficiency and Chemical Structure”, Applied Surface Science, Vol:236, pp:155-164.
  • 19. Kılınççeker, G. and Galip, H., (2009). “Electrochemical behaviour of zinc in chloride and acetate solutions”, Protection of Metals and Physical Chemistry of Surfaces, Vol:45, pp:232-240.
  • 20. Kılınççeker, G. and Galip, H., (2008). “The effect of acetate ions on electrochemical behavior of copper in chloride solutions”, Materials Chemistry and Physics, Vol:110, pp:380-386.
  • 21. Leckie, H.P. and Uhling, H.H.,(1996). J. Electrochem. Soc., Vol:113, p:1262.
  • 22. Perez Sanchez, M., Barrera, M., Gonzalez, S., Souto, R.M., Salvarezza, R.C. and Arvia, A.J.,(1990). “Electrochemical behaviour of copper in aqueous moderate alkaline media, containing sodium carbonate and bicarbonate, and sodium perchlorate”, Electrochim. Acta., Vol:35, No:9, pp:1337-1343.
  • 23. Souto, R.M., Perez Sanchez, M., Barrera, M., Gonzalez, S., Salvarezza, R.C. and Arvia, A.J.,(1992). “The kinetics of pitting corrosion of copper in alkaline solutions containing sodium perchlorate”, Electrochim. Acta., Vol:37, No:8, pp:1437-1443.
  • 24. Cordeiro, G.G.O., Barcia, O.E., and Mattos, O.R.,(1993). “Copper electrodissolution mechanism in a 1M sulphate medium”, Electrochim. Acta., Vol:38, No:2-3, pp:319-324.
  • 25. Laz, M.M., Souto, R.M., Gonzolez, S., Salvarezza, R.C. and Arvia, A.J.,(1992). “The formation of anodic layers on annealed copper surfaces in phosphate-containing solutions at different pH”, Electrochim.Acta., vol:37, No:4, pp:655-663.
  • 26. Marahusin, L., Kokot, S. and Schweinsberg, D.P.,(1993). “The electrogeneration of oxygen at copper and iron electrodes and its interaction with cotton fabric”, Corros. Sci., Vol:34, No:6, pp:1007-1016.
  • 27. Evans, G.P., (1990). “Advances in Electrochemical Science and Engineering”, Vol:1, pp:1-74, VCH, Weinheim.
  • 28. Popova, A.K., Raicheva, S.N., Sokolova E.I. and Christov M.V., 1996. A. Chem. Soc. Langmuir. A-G1:005.
  • 29. Lipkowski, J. and Ross, P.N., 1992. “Adsorption of molecules at metal electrodes”, VCH, New York.
  • 30. Damaskin, B.B., Petrii, O.A. and Batrakov, V.V., 1971. “Adsorption of organic compounds on electrodes”, Plenum Press, New York.
  • 31. Abdallah, M., (2004). “Antibacterial drugs as corrosion inhibitors for corrosion of aluminum in hydrochloric solution”, Corrosion Science, Vol:46, pp:1981–1996.
  • 32. Abdallah, M., (2002). “Rhodanine azosulpha drugs as corrosion inhibitors for corrosion of 304 stainless steel in hydrochloric acid solution”, Corrosion Science , Vol:44, pp:717-728.
  • 33. Yoshimura, M., Honda, K., Kondo, T., Rao, T.N., Tryk, D.A. and Fujishima, A., (2002). “Electrochemical examination of the ascorbic acid radical anion in non-aqueous electrolytes”, Electrochimica Acta, Vol:47, No:27, pp:4387-4392.

KLORÜRLÜ ORTAMLARDA (pH=8,0) BAKIRIN ELEKTROKİMYASAL DAVRANIŞLARINA KURT ÜZÜMÜ (Lycium Barbarum L., Solanaceae) MEYVE KONSANTRESİNİN İNHİBİSYON ETKİLERİNİN BELİRLENMESİ

Year 2017, Volume: 12 Issue: 1, 25 - 37, 05.01.2017
https://doi.org/10.12739/NWSA.2017.12.1.2A0109

Abstract

Bu
çalışmada, bakırın korozyon davranışlarına kurt üzümü (Lycium barbarum L., Solanaceae) meyve konsantresinin inhibisyon
etkisi %3,5 NaCl çözeltisinde
(pH=8,0) potansiyodinamik polarizasyon ve elektrokimyasal impedans
spektroskopisi kullanılarak araştırılmıştır. Kurt üzümü meyve konsantresinin
farklı derişimlerde akım-potansiyel eğrileri ve Nyquist diyagramı elde
edilmiştir. Kurt üzümü meyve konsantresini içeren ve içermeyen %3,5 NaCl çözeltilerinde
bekletildikten sonra bakır elektrotun taramalı elektron mikroskopu (SEM) ile
yüzey görüntüleri kaydedilmiştir. Elde edilen sonuçlardan kurt üzümü meyve
konsantresi %3,5 NaCl çözeltisinde
bakırın korozyonunu engellediği belirlenmiştir. İnhibisyon etkinliğinin, kurt
üzümü meyve konsantresinin derişimi ile değiştiği tespit edilmiştir.

References

  • 1. Erbil, M., (2012). “Korozyon, İlkeler-Önlemler”, Korozyon Derneği Yayını, Ankara.
  • 2. Crundwell, F.K., (1992).“The anodic dissolution of copper in hydrochloric acid solutions”, Electrochim. Acta., Vol:37, No:15, pp:2707-2714.
  • 3. Erbil, M., (1987). “Alternatif Akım (A.C.) İmpedansı Yöntemiyle Korozyon Hızı Belirlenmesi”, Doğa, Cilt:3, Sayfa:100-111.
  • 4. Kılınççeker, G., (2008). “The effect of acetate ions on electrochemical behavior of brass in chloride solutions”, Colloids and Surfaces A:Physicochemical and Engineering Aspects, Vol:329, pp:112-118.
  • 5. Kılınççeker, G., Yazıcı, B., Yılmaz, A.B. and Erbil, M., (2008). “The effect of phosphate ions on the electrochemical behavior of copper in sulphate solutions”, British Corrosion Journal, Vol:37, pp:23-30.
  • 6. Kılınççeker G., Doğan T.,(2016). “The influences of glucose on corrosion behaviour of copper in chloride solution”, Protection of Metals and Physical Chemistry of Surfaces, Vol:52,No:5, pp:910–920.
  • 7. Kılınççeker, G., Menekşe C., (2015). “The Effect of Acetate Ions on the Corrosion of Reinforcing Steel in Chloride Environments”. Protection of Metals and Physical Chemistry of Surfaces, Vol:51,No:4, pp: 659–666.
  • 8. Kılınççeker G., Celik S.,(2013).“Electrochemical adsorption properties and inhibition of copper corrosion in chloride solutions by ascorbic acid: experimental and theoretical investigation”. Ionics, Vol:19, No:11, pp: 1655-1662.
  • 9. Stern, M., Geary, A.L.,(1957). J. Electrochem. Soc. Vol:104, p:56.
  • 10. Sankarapapavınasam, S. and Ahmed, M.F.,(1992). “Benzenethiols as inhibitors for the corrosion of copper”, J. Appl. Electrochem., Vol:22, No:4, pp:390-395.
  • 11. Kılınççeker, G. and Erbil, M.,(2010). “The effect of phosphate ions on the electrochemical behaviour of brass in sulphate solutions”, Mater. Chem. Phys., 2010, Vol:119, No:1-2, pp:30-39.
  • 12. Crousier, J., Pardessus, L. and Crousier, J.-P.,(1988). “Voltammetry study of copper in chloride solution”, Electrochim. Acta., Vol:33, No:8, pp:1039-1042.
  • 13. Bockris, J.O.M. and Reddy, A.K.N., (1977). “Modern Electrochemistry”, Vol.2, Plenum Press, New York.
  • 14. Abd El-Maksoud, S.A., and Fouda, A.S., (2005). “Some Pyridine Derivatives as Corrosion Inhibitors for Carbon Steel in Acidic Medium”, Materials Chemistry and Physics, Vol:93, pp:84-90.
  • 15. Crundwell, F.K., (1992).“The anodic dissolution of copper in hydrochloric acid solutions”, Electrochim. Acta., Vol:37, No:15, pp:2707-2714.
  • 16. Rozenfeld, I.L. and Hardin, R., (1981). “Corrosion inhibitors”, McGraw-Hill, New York.
  • 17. Pourbaix, M., (1966). “Atlas of Electrochemical Aqueous Solutions”, Pergamon Press, New York pp:384–392.
  • 18. Özcan, M., Dehri, İ. and Erbil, M., (2004). “Organic Sulphur-containing Compounds as Corrosion Inhibitors for Mild Steel in Acidic Media: Correlation Between Inhibition Efficiency and Chemical Structure”, Applied Surface Science, Vol:236, pp:155-164.
  • 19. Kılınççeker, G. and Galip, H., (2009). “Electrochemical behaviour of zinc in chloride and acetate solutions”, Protection of Metals and Physical Chemistry of Surfaces, Vol:45, pp:232-240.
  • 20. Kılınççeker, G. and Galip, H., (2008). “The effect of acetate ions on electrochemical behavior of copper in chloride solutions”, Materials Chemistry and Physics, Vol:110, pp:380-386.
  • 21. Leckie, H.P. and Uhling, H.H.,(1996). J. Electrochem. Soc., Vol:113, p:1262.
  • 22. Perez Sanchez, M., Barrera, M., Gonzalez, S., Souto, R.M., Salvarezza, R.C. and Arvia, A.J.,(1990). “Electrochemical behaviour of copper in aqueous moderate alkaline media, containing sodium carbonate and bicarbonate, and sodium perchlorate”, Electrochim. Acta., Vol:35, No:9, pp:1337-1343.
  • 23. Souto, R.M., Perez Sanchez, M., Barrera, M., Gonzalez, S., Salvarezza, R.C. and Arvia, A.J.,(1992). “The kinetics of pitting corrosion of copper in alkaline solutions containing sodium perchlorate”, Electrochim. Acta., Vol:37, No:8, pp:1437-1443.
  • 24. Cordeiro, G.G.O., Barcia, O.E., and Mattos, O.R.,(1993). “Copper electrodissolution mechanism in a 1M sulphate medium”, Electrochim. Acta., Vol:38, No:2-3, pp:319-324.
  • 25. Laz, M.M., Souto, R.M., Gonzolez, S., Salvarezza, R.C. and Arvia, A.J.,(1992). “The formation of anodic layers on annealed copper surfaces in phosphate-containing solutions at different pH”, Electrochim.Acta., vol:37, No:4, pp:655-663.
  • 26. Marahusin, L., Kokot, S. and Schweinsberg, D.P.,(1993). “The electrogeneration of oxygen at copper and iron electrodes and its interaction with cotton fabric”, Corros. Sci., Vol:34, No:6, pp:1007-1016.
  • 27. Evans, G.P., (1990). “Advances in Electrochemical Science and Engineering”, Vol:1, pp:1-74, VCH, Weinheim.
  • 28. Popova, A.K., Raicheva, S.N., Sokolova E.I. and Christov M.V., 1996. A. Chem. Soc. Langmuir. A-G1:005.
  • 29. Lipkowski, J. and Ross, P.N., 1992. “Adsorption of molecules at metal electrodes”, VCH, New York.
  • 30. Damaskin, B.B., Petrii, O.A. and Batrakov, V.V., 1971. “Adsorption of organic compounds on electrodes”, Plenum Press, New York.
  • 31. Abdallah, M., (2004). “Antibacterial drugs as corrosion inhibitors for corrosion of aluminum in hydrochloric solution”, Corrosion Science, Vol:46, pp:1981–1996.
  • 32. Abdallah, M., (2002). “Rhodanine azosulpha drugs as corrosion inhibitors for corrosion of 304 stainless steel in hydrochloric acid solution”, Corrosion Science , Vol:44, pp:717-728.
  • 33. Yoshimura, M., Honda, K., Kondo, T., Rao, T.N., Tryk, D.A. and Fujishima, A., (2002). “Electrochemical examination of the ascorbic acid radical anion in non-aqueous electrolytes”, Electrochimica Acta, Vol:47, No:27, pp:4387-4392.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Güray Kılınçeker

Sema Çelik

Mustafa Kemal Sangün

Publication Date January 5, 2017
Published in Issue Year 2017 Volume: 12 Issue: 1

Cite

APA Kılınçeker, G., Çelik, S., & Sangün, M. K. (2017). KLORÜRLÜ ORTAMLARDA (pH=8,0) BAKIRIN ELEKTROKİMYASAL DAVRANIŞLARINA KURT ÜZÜMÜ (Lycium Barbarum L., Solanaceae) MEYVE KONSANTRESİNİN İNHİBİSYON ETKİLERİNİN BELİRLENMESİ. Technological Applied Sciences, 12(1), 25-37. https://doi.org/10.12739/NWSA.2017.12.1.2A0109
AMA Kılınçeker G, Çelik S, Sangün MK. KLORÜRLÜ ORTAMLARDA (pH=8,0) BAKIRIN ELEKTROKİMYASAL DAVRANIŞLARINA KURT ÜZÜMÜ (Lycium Barbarum L., Solanaceae) MEYVE KONSANTRESİNİN İNHİBİSYON ETKİLERİNİN BELİRLENMESİ. Technological Applied Sciences. January 2017;12(1):25-37. doi:10.12739/NWSA.2017.12.1.2A0109
Chicago Kılınçeker, Güray, Sema Çelik, and Mustafa Kemal Sangün. “KLORÜRLÜ ORTAMLARDA (pH=8,0) BAKIRIN ELEKTROKİMYASAL DAVRANIŞLARINA KURT ÜZÜMÜ (Lycium Barbarum L., Solanaceae) MEYVE KONSANTRESİNİN İNHİBİSYON ETKİLERİNİN BELİRLENMESİ”. Technological Applied Sciences 12, no. 1 (January 2017): 25-37. https://doi.org/10.12739/NWSA.2017.12.1.2A0109.
EndNote Kılınçeker G, Çelik S, Sangün MK (January 1, 2017) KLORÜRLÜ ORTAMLARDA (pH=8,0) BAKIRIN ELEKTROKİMYASAL DAVRANIŞLARINA KURT ÜZÜMÜ (Lycium Barbarum L., Solanaceae) MEYVE KONSANTRESİNİN İNHİBİSYON ETKİLERİNİN BELİRLENMESİ. Technological Applied Sciences 12 1 25–37.
IEEE G. Kılınçeker, S. Çelik, and M. K. Sangün, “KLORÜRLÜ ORTAMLARDA (pH=8,0) BAKIRIN ELEKTROKİMYASAL DAVRANIŞLARINA KURT ÜZÜMÜ (Lycium Barbarum L., Solanaceae) MEYVE KONSANTRESİNİN İNHİBİSYON ETKİLERİNİN BELİRLENMESİ”, Technological Applied Sciences, vol. 12, no. 1, pp. 25–37, 2017, doi: 10.12739/NWSA.2017.12.1.2A0109.
ISNAD Kılınçeker, Güray et al. “KLORÜRLÜ ORTAMLARDA (pH=8,0) BAKIRIN ELEKTROKİMYASAL DAVRANIŞLARINA KURT ÜZÜMÜ (Lycium Barbarum L., Solanaceae) MEYVE KONSANTRESİNİN İNHİBİSYON ETKİLERİNİN BELİRLENMESİ”. Technological Applied Sciences 12/1 (January 2017), 25-37. https://doi.org/10.12739/NWSA.2017.12.1.2A0109.
JAMA Kılınçeker G, Çelik S, Sangün MK. KLORÜRLÜ ORTAMLARDA (pH=8,0) BAKIRIN ELEKTROKİMYASAL DAVRANIŞLARINA KURT ÜZÜMÜ (Lycium Barbarum L., Solanaceae) MEYVE KONSANTRESİNİN İNHİBİSYON ETKİLERİNİN BELİRLENMESİ. Technological Applied Sciences. 2017;12:25–37.
MLA Kılınçeker, Güray et al. “KLORÜRLÜ ORTAMLARDA (pH=8,0) BAKIRIN ELEKTROKİMYASAL DAVRANIŞLARINA KURT ÜZÜMÜ (Lycium Barbarum L., Solanaceae) MEYVE KONSANTRESİNİN İNHİBİSYON ETKİLERİNİN BELİRLENMESİ”. Technological Applied Sciences, vol. 12, no. 1, 2017, pp. 25-37, doi:10.12739/NWSA.2017.12.1.2A0109.
Vancouver Kılınçeker G, Çelik S, Sangün MK. KLORÜRLÜ ORTAMLARDA (pH=8,0) BAKIRIN ELEKTROKİMYASAL DAVRANIŞLARINA KURT ÜZÜMÜ (Lycium Barbarum L., Solanaceae) MEYVE KONSANTRESİNİN İNHİBİSYON ETKİLERİNİN BELİRLENMESİ. Technological Applied Sciences. 2017;12(1):25-37.