Research Article
BibTex RIS Cite

Ti6Al4V ALAŞIMININ FİBER LAZER KAYNAK KABİLİYETİ

Year 2017, Volume: 12 Issue: 3, 140 - 152, 06.07.2017

Abstract

Bu çalışmada, Ti6Al4V
titanyum alaşımı levhalar fiber lazer kaynak yöntemiyle birleştirilmiştir. Farklı
ısı girdisi şartlarının, fiber lazer kaynaklı birleştirmelerin metalurjik ve
mekanik özelliklerine etkileri incelenmiştir. Yüksek ısı girdisi ile
birleştirilen numunenin kaynak metalinde düşük ısı girdisiyle birleştirilen
numunenin mikroyapısına göre bir miktar tane irileşmesi meydana geldiği, kaynak
metalinde birincil α yapılarının hacim oranının arttığı gözlenmiştir. Düşük ısı
girdisiyle birleştirilen numunenin kaynak metali mikroyapısı basketweave ya da asiküler
α' ve tane sınırlarında birincil β tanelerinden meydana gelmiştir. Düşük ısı
girdisiyle birleştirilen numunenin çekme dayanımı, yüksek ısı girdisiyle
birleştirilen numuneye göre yüksek bulunurken sünekliği daha az bulunmuştur. 

References

  • 1. Köse, C. and Karaca, E., (2017). Robotic Nd:YAG Fiber Laser Welding of Ti-6Al-4V Alloy, Metals, Vol:7, pp:1-11.
  • 2. Kahraman, N., (2007). The Influence of Welding Parameters on the Joint Strength of Resistance Spot-Welded Titanium Sheets, Mater.Des., Vol:28, pp:420-427.
  • 3. Çalıgülü, U., (2016). Ti6Al4V Alaşımının Gümüş Aratabaka Kullanılarak Difüzyon Kaynağı ile Birleştirilebilirliği, Dicle Üniversitesi Mühendislik Dergisi, Vol:7, pp:577-586.
  • 4. Yıldız, A., Kaya, Y., and Kahraman, N., (2016). Joint Properties and Microstructure of Diffusion-Bonded Grade 2 Titanium to AISI 430 Ferritic Stainless Steel Using Pure Ni Interlayer, Int J Adv Manuf Technol., Vol:86, pp:1287-1298.
  • 5. Dikbaş, H. and Katı, N., (2015). Ti6Al4V Alaşımının PTA Kaynağında 1800W Kaynak Gücünde Birleştirilebilirliğin Araştırılması, Dicle Üniversitesi Mühendislik Fakültesi, Mühendislik Dergisi, Vol:6, pp:19-30.
  • 6. Gao, X.L., Zhang, L.J., Jing, L., and Zhang, J.X., (2013). A Comparative Study of Pulsed Nd:YAG Laser Welding and TIG Welding of Thin Ti6Al4V Titanium Alloy Plate, Mat Sci Eng A., Vol:559, pp:14-21.
  • 7. Balasubramanian, T.S., Balakrishnan, M., Balasubramanian, V., and Manickam, M.M., (2011). Influence of Welding Processes on Microstructure, Tensile and Impact Properties of Ti-6Al-4V Alloy Joints, Trans. Nonferrous Met. Soc. China., Vol:6, pp:1253-1262.
  • 8. Murthy, K.K. and Sundaresan, S., (1998). Phase Transformations in a Welded Near-α Titanium Alloy as a Function of Weld Cooling Rate and Post-Weld Heat Treatment Conditions, J. Mater. Sci., Vol:33, pp:817-826.
  • 9. Köse, C. and Kaçar, R., (2014). The Effect of Preheat & Post Weld Heat Treatment on the Laser Weldability of AISI 420 Martensitic Stainless Steel, Mater. Des., Vol:64, pp:221–226.
  • 10. Köse, C. and Kaçar, R., (2014). Mechanical Properties of Laser Welded 2205 Duplex Stainless Steel, Mater Test., Vol:54, pp:779-785.
  • 11. Köse, C. and Kaçar, R., (2015). Effect of Welding Speed on the Mechanical Properties and Microstructure of Laser Welded AISI 316L Stainless Steel, J Fac Eng Archit Gaz., Vol:3, pp:225-235.
  • 12. Köse, C., Kaçar, R., Zorba, A., Bağırova, M., and Allahverdiyev, A.M., (2016). The Effect of CO2 Laser Beam Welded AISI 316L Austenitic Stainless Steel on the Viability of Fibroblast Cells, In Vitro, Mater Sci Eng C., Vol:60, pp:211-218.
  • 13. Köse, C. and Kaçar, R., (2016). In Vitro Bioactivity and Corrosion Properties of Laser Beam Welded Medical Grade AISI 316L Stainless Steel in Simulated Body Fluid, Int. J. Electrochem. Sci., Vol:11, pp:2762-2777.
  • 14. Köse, C., (2016). An Investigation of the Surface Characterization of Laser Surface Remelted and Laser Beam Welded AISI 316L Stainless Steel, Int. J. Electrochem. Sci., Vol:11, pp:3542-3554.
  • 15. Köse, C., (2016). Weldability of 5754 Aluminum Alloy Using a Pulsed Nd:YAG Micro Scale Laser, Mater. Test., Vol:58, pp:963-969.
  • 16. Taskin, M., Caligulu, U., and Turkmen, M., (2011). X-ray Tests of AISI 430 and 304 Stainless Steels and AISI 1010 Low Carbon Steel Welded by CO2 Laser Beam Welding, Mater Test., Vol:53, pp:741-747.
  • 17. Quintino, L., Costa, A., Miranda, R., Yapp, D., Kumar, V., and Kong, C.J., (2007). Welding with High Power Fiber Lasers – A Preliminary Study, Mater. Des., Vol:28, pp:1231-1237.
  • 18. Fu, P., Mao, Z., Zuo, C., Wang, Y., and Wang, C., (2014). Microstructures and Fatigue Properties of Electron Beam Welds with Beam Oscillation for Heavy Section TC4-DT Alloy, Chin J Aeronaut., Vol:4, pp:1015-1021.
  • 19. Casalino, G., Mortello, M., and Campanelli, S.L., (2015). Ytterbium Fiber Laser Welding of Ti6Al4V Alloy, J Manuf Process., Vol:20, pp:250-256.
  • 20. Wang, S.H., Wei, M.D., and Tsay, L.W., (2003). Tensile Properties of LBW Welds in Ti–6Al–4V Alloy at Evaluated Temperatures Below 450°C, Mater. Lett., Vol:57, pp:1815-1823.
  • 21. Ahmed, T, and Rack, H.J., (1998). Phase Transformations During Cooling in α+β Titanium Alloys, Mat Sci Eng A., Vol:1-2, pp:206-211.
  • 22. Akman, E., Demir, A., Canel, T., and Sınmazçelik, T., (2009). Laser Welding of Ti6Al4V Titanium Alloys, J. Mater. Process. Technol.,Vol:209, pp:3705-3713.
  • 23. Kabir, A.S.H., Cao, X., Medraj, M., Wanjara, P., Cuddy, J., and Birur, A., (2010). Effect of welding speed and defocusing distance on the quality of laser welded Ti-6Al-4V. Proceedings of the Materials Science and Technology (MS&T), Conference. Houston, TX.
  • 24. Sundaresan, S., Ram G.D.J., and Reddy, G.M., (1999). Microstructural Refinement of Weld Fusion Zones in a–b titanium Alloys Using Pulsed Current Welding, Mat Sci Eng A., Vol:262, pp:88-100.
  • 25. Barreda, J.L., Santamaria, F., Azpiroz, X., Irisarri, A.M., and Varona, J.M., (2001). Electron Beam Welded High Thickness Ti6Al4V Plates Using Filler Metal of Similar and Different Composition to the Base Plate, Vacuum, Vol:62, pp:143-150.
  • 26. Yunk, W.K.C., Ralph, B., Lee, W.B., and Fenn, R., (1997). An Investigation into Welding Parameters Affecting the Tensile Properties of Titanium Welds, J. Mater. Process. Technol., Vol:63, pp:759-764.
  • 27. Tsay, L.W. and Tsay, C.Y., (1997). The Effect of Microstructures on the Fatigue Crack Growth in Ti-6AI-4V Laser Welds, In J Fatigue, Vol:19, pp:713-720.
  • 28. Mehdi, B., Badji, R., Ji, V., Allili, B, Deschaux-Beaume, F., and Soulie, F., (2016). Microstructure and Residual Stresses in Ti-6Al-4V Alloy Pulsed and Unpulsed TIG Welds, J. Mater. Process. Technol., Vol:231, pp:441-448.
  • 29. Kabir, A.S.H., Cao, X., Gholipour, J., Wanjara, P., Cuddy, J., Birur, A., and Medraj, M., (2012). Effect of Postweld Heat Treatment on Microstructure, Hardness, and Tensile Properties of Laser-Welded Ti-6Al-4V, Metall and Mat Trans A, Vol:43, pp:4171-4184.
  • 30. Caiazzo, F., Curcio, F., Daurelio, G., and Minutolo, F.M.C., (2004). Ti6Al4V Sheets Lap and Butt Joints Carried Out by CO2 Laser: Mechanical and Morphological Characterization, J. Mater. Process. Technol., Vol:149, pp:546-552.
Year 2017, Volume: 12 Issue: 3, 140 - 152, 06.07.2017

Abstract

References

  • 1. Köse, C. and Karaca, E., (2017). Robotic Nd:YAG Fiber Laser Welding of Ti-6Al-4V Alloy, Metals, Vol:7, pp:1-11.
  • 2. Kahraman, N., (2007). The Influence of Welding Parameters on the Joint Strength of Resistance Spot-Welded Titanium Sheets, Mater.Des., Vol:28, pp:420-427.
  • 3. Çalıgülü, U., (2016). Ti6Al4V Alaşımının Gümüş Aratabaka Kullanılarak Difüzyon Kaynağı ile Birleştirilebilirliği, Dicle Üniversitesi Mühendislik Dergisi, Vol:7, pp:577-586.
  • 4. Yıldız, A., Kaya, Y., and Kahraman, N., (2016). Joint Properties and Microstructure of Diffusion-Bonded Grade 2 Titanium to AISI 430 Ferritic Stainless Steel Using Pure Ni Interlayer, Int J Adv Manuf Technol., Vol:86, pp:1287-1298.
  • 5. Dikbaş, H. and Katı, N., (2015). Ti6Al4V Alaşımının PTA Kaynağında 1800W Kaynak Gücünde Birleştirilebilirliğin Araştırılması, Dicle Üniversitesi Mühendislik Fakültesi, Mühendislik Dergisi, Vol:6, pp:19-30.
  • 6. Gao, X.L., Zhang, L.J., Jing, L., and Zhang, J.X., (2013). A Comparative Study of Pulsed Nd:YAG Laser Welding and TIG Welding of Thin Ti6Al4V Titanium Alloy Plate, Mat Sci Eng A., Vol:559, pp:14-21.
  • 7. Balasubramanian, T.S., Balakrishnan, M., Balasubramanian, V., and Manickam, M.M., (2011). Influence of Welding Processes on Microstructure, Tensile and Impact Properties of Ti-6Al-4V Alloy Joints, Trans. Nonferrous Met. Soc. China., Vol:6, pp:1253-1262.
  • 8. Murthy, K.K. and Sundaresan, S., (1998). Phase Transformations in a Welded Near-α Titanium Alloy as a Function of Weld Cooling Rate and Post-Weld Heat Treatment Conditions, J. Mater. Sci., Vol:33, pp:817-826.
  • 9. Köse, C. and Kaçar, R., (2014). The Effect of Preheat & Post Weld Heat Treatment on the Laser Weldability of AISI 420 Martensitic Stainless Steel, Mater. Des., Vol:64, pp:221–226.
  • 10. Köse, C. and Kaçar, R., (2014). Mechanical Properties of Laser Welded 2205 Duplex Stainless Steel, Mater Test., Vol:54, pp:779-785.
  • 11. Köse, C. and Kaçar, R., (2015). Effect of Welding Speed on the Mechanical Properties and Microstructure of Laser Welded AISI 316L Stainless Steel, J Fac Eng Archit Gaz., Vol:3, pp:225-235.
  • 12. Köse, C., Kaçar, R., Zorba, A., Bağırova, M., and Allahverdiyev, A.M., (2016). The Effect of CO2 Laser Beam Welded AISI 316L Austenitic Stainless Steel on the Viability of Fibroblast Cells, In Vitro, Mater Sci Eng C., Vol:60, pp:211-218.
  • 13. Köse, C. and Kaçar, R., (2016). In Vitro Bioactivity and Corrosion Properties of Laser Beam Welded Medical Grade AISI 316L Stainless Steel in Simulated Body Fluid, Int. J. Electrochem. Sci., Vol:11, pp:2762-2777.
  • 14. Köse, C., (2016). An Investigation of the Surface Characterization of Laser Surface Remelted and Laser Beam Welded AISI 316L Stainless Steel, Int. J. Electrochem. Sci., Vol:11, pp:3542-3554.
  • 15. Köse, C., (2016). Weldability of 5754 Aluminum Alloy Using a Pulsed Nd:YAG Micro Scale Laser, Mater. Test., Vol:58, pp:963-969.
  • 16. Taskin, M., Caligulu, U., and Turkmen, M., (2011). X-ray Tests of AISI 430 and 304 Stainless Steels and AISI 1010 Low Carbon Steel Welded by CO2 Laser Beam Welding, Mater Test., Vol:53, pp:741-747.
  • 17. Quintino, L., Costa, A., Miranda, R., Yapp, D., Kumar, V., and Kong, C.J., (2007). Welding with High Power Fiber Lasers – A Preliminary Study, Mater. Des., Vol:28, pp:1231-1237.
  • 18. Fu, P., Mao, Z., Zuo, C., Wang, Y., and Wang, C., (2014). Microstructures and Fatigue Properties of Electron Beam Welds with Beam Oscillation for Heavy Section TC4-DT Alloy, Chin J Aeronaut., Vol:4, pp:1015-1021.
  • 19. Casalino, G., Mortello, M., and Campanelli, S.L., (2015). Ytterbium Fiber Laser Welding of Ti6Al4V Alloy, J Manuf Process., Vol:20, pp:250-256.
  • 20. Wang, S.H., Wei, M.D., and Tsay, L.W., (2003). Tensile Properties of LBW Welds in Ti–6Al–4V Alloy at Evaluated Temperatures Below 450°C, Mater. Lett., Vol:57, pp:1815-1823.
  • 21. Ahmed, T, and Rack, H.J., (1998). Phase Transformations During Cooling in α+β Titanium Alloys, Mat Sci Eng A., Vol:1-2, pp:206-211.
  • 22. Akman, E., Demir, A., Canel, T., and Sınmazçelik, T., (2009). Laser Welding of Ti6Al4V Titanium Alloys, J. Mater. Process. Technol.,Vol:209, pp:3705-3713.
  • 23. Kabir, A.S.H., Cao, X., Medraj, M., Wanjara, P., Cuddy, J., and Birur, A., (2010). Effect of welding speed and defocusing distance on the quality of laser welded Ti-6Al-4V. Proceedings of the Materials Science and Technology (MS&T), Conference. Houston, TX.
  • 24. Sundaresan, S., Ram G.D.J., and Reddy, G.M., (1999). Microstructural Refinement of Weld Fusion Zones in a–b titanium Alloys Using Pulsed Current Welding, Mat Sci Eng A., Vol:262, pp:88-100.
  • 25. Barreda, J.L., Santamaria, F., Azpiroz, X., Irisarri, A.M., and Varona, J.M., (2001). Electron Beam Welded High Thickness Ti6Al4V Plates Using Filler Metal of Similar and Different Composition to the Base Plate, Vacuum, Vol:62, pp:143-150.
  • 26. Yunk, W.K.C., Ralph, B., Lee, W.B., and Fenn, R., (1997). An Investigation into Welding Parameters Affecting the Tensile Properties of Titanium Welds, J. Mater. Process. Technol., Vol:63, pp:759-764.
  • 27. Tsay, L.W. and Tsay, C.Y., (1997). The Effect of Microstructures on the Fatigue Crack Growth in Ti-6AI-4V Laser Welds, In J Fatigue, Vol:19, pp:713-720.
  • 28. Mehdi, B., Badji, R., Ji, V., Allili, B, Deschaux-Beaume, F., and Soulie, F., (2016). Microstructure and Residual Stresses in Ti-6Al-4V Alloy Pulsed and Unpulsed TIG Welds, J. Mater. Process. Technol., Vol:231, pp:441-448.
  • 29. Kabir, A.S.H., Cao, X., Gholipour, J., Wanjara, P., Cuddy, J., Birur, A., and Medraj, M., (2012). Effect of Postweld Heat Treatment on Microstructure, Hardness, and Tensile Properties of Laser-Welded Ti-6Al-4V, Metall and Mat Trans A, Vol:43, pp:4171-4184.
  • 30. Caiazzo, F., Curcio, F., Daurelio, G., and Minutolo, F.M.C., (2004). Ti6Al4V Sheets Lap and Butt Joints Carried Out by CO2 Laser: Mechanical and Morphological Characterization, J. Mater. Process. Technol., Vol:149, pp:546-552.
There are 30 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Ceyhun Köse

Engin Karaca This is me

Publication Date July 6, 2017
Published in Issue Year 2017 Volume: 12 Issue: 3

Cite

APA Köse, C., & Karaca, E. (2017). Ti6Al4V ALAŞIMININ FİBER LAZER KAYNAK KABİLİYETİ. Technological Applied Sciences, 12(3), 140-152.
AMA Köse C, Karaca E. Ti6Al4V ALAŞIMININ FİBER LAZER KAYNAK KABİLİYETİ. Technological Applied Sciences. July 2017;12(3):140-152.
Chicago Köse, Ceyhun, and Engin Karaca. “Ti6Al4V ALAŞIMININ FİBER LAZER KAYNAK KABİLİYETİ”. Technological Applied Sciences 12, no. 3 (July 2017): 140-52.
EndNote Köse C, Karaca E (July 1, 2017) Ti6Al4V ALAŞIMININ FİBER LAZER KAYNAK KABİLİYETİ. Technological Applied Sciences 12 3 140–152.
IEEE C. Köse and E. Karaca, “Ti6Al4V ALAŞIMININ FİBER LAZER KAYNAK KABİLİYETİ”, Technological Applied Sciences, vol. 12, no. 3, pp. 140–152, 2017.
ISNAD Köse, Ceyhun - Karaca, Engin. “Ti6Al4V ALAŞIMININ FİBER LAZER KAYNAK KABİLİYETİ”. Technological Applied Sciences 12/3 (July 2017), 140-152.
JAMA Köse C, Karaca E. Ti6Al4V ALAŞIMININ FİBER LAZER KAYNAK KABİLİYETİ. Technological Applied Sciences. 2017;12:140–152.
MLA Köse, Ceyhun and Engin Karaca. “Ti6Al4V ALAŞIMININ FİBER LAZER KAYNAK KABİLİYETİ”. Technological Applied Sciences, vol. 12, no. 3, 2017, pp. 140-52.
Vancouver Köse C, Karaca E. Ti6Al4V ALAŞIMININ FİBER LAZER KAYNAK KABİLİYETİ. Technological Applied Sciences. 2017;12(3):140-52.