Research Article
BibTex RIS Cite

Green Synthesis of Silver Nanoparticles Using Safran (Crocus sativus) Purple flower and Their Antimicrobial activity

Year 2023, , 8 - 17, 30.04.2023
https://doi.org/10.56941/odutip.1285154

Abstract

Objective: In this research, CS-AgNPs were created, described, and their antibacterial activity assessed utilizing an inexpensive, simple, and ecologically friendly extraction approach from the waste saffron flower's purple flower parts.
Methods: : In this study, silver nanoparticles (AgNPs) were synthesized quickly, cheaply, and environmentally friendly utilizing purple flower extract from saffron (Crocus sativus (CS)). For the explanation of the structure of silver nanoparticles synthesized with saffron flower extract (CS-AgNPs); UV-visible (UV-vis.) Spectrophotometer, Fourier Scanning Electron Microscope (FE-SEM), Scanning Electron Microscope (SEM), Electron Distributed X-rays (EDX), Fourier Transform Infrared Spectroscopy (FT-IR), X-Ray Characterized using Diffraction Diffractrometer (XRD), Transmission Electron Microscope (TEM), Zeta potential data. It was discovered that the UV-visible spectrum of the biologically produced silver nanoparticles generated at a maximal wavelength of 405.68 nm in the spectrum collected after 15 minutes. Furthermore, it was noted that the synthesized nanoparticles' UV spectrum, taken a month later, revealed the same wavelength and that the resulting nanoparticles were stable. CS-AgNPs' antimicrobial effects against gram-positive, gram-negative, and fungal pathogens were assessed employing the minimum inhibition concentration approach.
Results: The generated CS-AgNPs were found to be active against both fungi and bacteria as a consequence.
Conclusion: It turned out that even at very low concentrations, the antimicrobial activity of silver nanoparticles enhanced with decreasing size and had high antibacterial and anticandidal implementation.

References

  • 1. Baran A. Eco- friendly, rapid synthesis of silver nanomaterials and their use for biomedical applications, Dicle Univ J Eng. 2021;12(2):329–336.
  • 2. Baran MF, Acay H. Antimicrobial Activity of Silver Nanoparticles Synthesized with Extract of Tomato plant Against Bacterial and Fungal Pathogens. Middle Black Sea J Heal Sci. 2019;67–73.
  • 3. Keskin C, Atalar, MN, Baran M. & Baran A. (2021). Environmentally Friendly Rapid Synthesis of Gold Nanoparticles from Artemisia absinthium Plant Extract and Application of Antimicrobial Activities. Journal of the Institute of Science and Technology, 2021;11(1):365-375. doi: 10.21597/jist.779169 4.
  • 4. Baran MF, Acay H, Keskin C. Determination of Antimicrobial and Toxic Metal Removal Activities of Plant‐Based Synthesized (Capsicum annuum L. Leaves), Ecofriendly, Gold Nanomaterials. Glob Challenges. 2020;4(5):1900104.
  • 5. Baran MF. Synthesis and Antimicrobial Applications of Silver Nanoparticles From artemisia absinthium plant. Biol Chem Res. 2019;6:96–103.
  • 6. Baran. MF. Green Synthesıs of Silver Nanoparticles (Agnps) Usıng Pistacia terebinthus Leaf: Antimicrobial Effect .and Characterization. EJONS Int J Math Eng Nat Sci. 2018;2(2018):67–75.
  • 7. Keskin C, Baran A, Baran MF, Hatipoglu A, Adican MT, Atalar MN, et al. Green Synthesis, Characterization of Gold Nanomaterials using Gundelia tournefortii Leaf Extract, and Determination of Their Nanomedicinal (Antibacterial, Antifungal, and Cytotoxic) Potential. J Nanomater. 2022;2022.
  • 8. Umaz A, Koc A, Baran MF, Keskin C, Atalar MN. Investigation of Antimicrobial Activity and Characterization, Synthesis of Silver Nanoparticles from Hypericum triquetrifoliumi Journal of the Institute of Science and Technology. 2019;9(3):1467–75.
  • 9. Baran MF, Keskin C, Baran A, Hatipoglu A, Yildiztekin M, Küçükaydin S, et al. Green Synthesis of Silver Nanoparticles from Allium cepa L. Peel Extract, Their Antioxidant, Antipathogenic, and Anticholinesterase Activity. Molecules. 2023;28(5).
  • 10. Muraro PCL, Pinheiro LDSM, Chuy G, Vizzotto BS, Pavoski G, Espinosa DCR, et al. Silver nanoparticles from residual biomass: Biosynthesis, characterization and antimicrobial activity. J Biotechnol. 2022;343(5):47–51. 11. Shirmehenji R, Javanshir S, Honarmand M. A Green Approach to the Bio-based Synthesis of Selenium Nanoparticles from Mining Waste. J Clust Sci [Internet]. 2021;32(5):1311–23. https://doi.org/10.1007/s10876-020-01892-7
  • 12. Senthilkumar P, Surendran L, Sudhagar B, Ranjith Santhosh Kumar DS. Facile green synthesis of gold nanoparticles from marine algae Gelidiella acerosa and evaluation of its biological Potential. SN Appl Sci. 2019;1(4):1–12. https://doi.org/10.1007/s42452-019-0284-z
  • 13. Baran MF. Synthesis of silver nanoparticles (AgNP) with Prunus avium cherry leaf extract and investigation of its antimicrobial effect. Dicle Univ J Eng. 2019;10(1):221–7.
  • 14. Sharifi S, Fathi N, Memar MY, Hosseiniyan Khatibi SM, Khalilov R, Negahdari R, et al. Anti-microbial activity of curcumin nanoformulations: New trends and future perspectives. Phyther Res. 2020;34(8):1926–46.
  • 15. Tenzin T, Kaur A. Recent Advances in the Green Synthesis of Gold and Silver Nanostructures for Augmented Anti-Microbal Activity. Iran J Mater Sci Eng. 2022;19(2):1–28.
  • 16. Baran MF. Evaluation of Green Synthesis and Anti-Microbial Activities of AgNPs Using Leaf Extract of Hawthorn Plant. Res Eval Sci Math. 2019;2019(3):110–20.
  • 17. Attar A, Yapaoz MA. Biosynthesis of palladium nanoparticles using Diospyros kaki leaf extract and determination of antibacterial efficacy. Prep Biochem Biotechnol 2018;48(7):629–34. https://doi.org/10.1080/10826068.2018.1479862
  • 18. Baran MF, Saydut A, Umaz A. Silver nanomaterial synthesis and antimicrobial applications. DUJE. 2019;10(2):689–95.
  • 19. Baran MF, Saydut A. Gold nanomaterial synthesis and characterization. Dicle Univ J Eng. 2019;10(3):1033–40. 20. Baran A, Hatipoglu A, Baran MF, Aktepe N. Synthesis of Gold Nanoparticles from Hawthorn (Crataegus monogyna) Fruit Extract and Evaluation of Antimicrobial Activities. Eur J Sci Technol. 2022;(32):974–8.
  • 21. Aslan N, Ceylan B, Koc MM, Findik F. Metallic nanoparticles as X-Ray computed tomography (CT) contrast agents: A review. J Mol Struct. 2020;1219:128599. https://doi.org/10.1016/j.molstruc.2020.128599
  • 22. Canpolat M. Removing Co(II) and Mn(II) ions effectively from aqueous solutions by means of chemically non-processed Mardin stonewaste: Equivalent, kinetic, and thermodynamic investigations Environ Prog Sustainable Energy.2022;e14042.
  • 23. Canpolat M, Altunkaynak Y, Yavuz O. Studies on the Equilibrium, Kinetic, and Thermodynamic Properties of Waste Orange Peel in the Removal of Copper (II) Ions from Aqueous Solutions. AKÜ FEMUBID, 2022;22(3):498-507.
  • 24. Canpolat M, Altunkaynak Y, Yavuz O. Effective removal of Pb(II) ions from aqueous solutions using chemically untreated Midyat stone: Isotherm, kinetic and thermodynamic studies. NOHU J Eng Sci. 2022:11 (4):1085-1096. doi: 10.28948/ngumuh.1089310.
  • 25. Baran MF, Duz MZ. Biosorption of Pb2+ from aqueous solutions by Bacillus licheniformis isolated from Tigris River with a comparative study. International Journal of Latest Engineering and Management Research 2019;04 - 05:108-121.
  • 26. Baran MF, Keskin C, Baran A, Hatipoglu A, Yildiztekin M, Kucukaydin S, et al. Green Synthesis of Silver Nanoparticles from Allium cepa L. Peel Extract, Their Antioxidant, Antipathogenic, and Anticholinesterase Activity. Molecules. 2023; 28(5):2310. https://doi.org/10.3390/molecules28052310.
  • 27. Baran MF, Keskin C, Baran A, Eftekhari A, Omarova S, Khalilov R, et al. The Investigation of the Chemical Composition and Applicability of Gold Nanoparticles Synthesized with Amygdalus communis (Almond) Leaf Aqueous Extract as Antimicrobial and Anticancer Agents. Molecules. 2023;28(6):2428. https://doi.org/10.3390/molecules28062428.
  • 28. Atalar MN, Baran, A, Baran MF, Keskin C, Aktepe N, Yavuz O, et al. (2021). Economic Fast Synthesis of Olive Leaf Extract and Silver Nanoparticles and Biomedical Applications. Particulate Sci. Tech. 2021;1977443, 1–9. doi:10.1080/02726351.2021.1977443

Safran (Crocus sativus ) Mor Çiçekleri Kullanılarak Gümüş Nanopartiküllerin Yeşil Sentezi ve Antimikrobiyal Aktiviteleri

Year 2023, , 8 - 17, 30.04.2023
https://doi.org/10.56941/odutip.1285154

Abstract

Amaç: Bu araştırmada, safran çiçeğinin mor çiçekleri parçalarından ucuz, basit ve çevre dostu bir ekstraksiyon yaklaşımı kullanılarak CS-AgNP'ler oluşturulmuş, tanımlanmış ve antibakteriyel aktiviteleri değerlendirilmiştir.
Metod: Bu çalışmada saffrondan (Crocus sativus (CS)) elde edilen mor çiçek özü kullanılarak gümüş nanoparçacıklar (AgNP'ler) hızlı, ucuz ve çevre dostu olarak sentezlendi. Safran çiçeği özü (CS-AgNPs) ile sentezlenen gümüş nanopartiküllerin yapısının açıklanması için; UV-görünür (UV-vis.) Spektrofotometre, Fourier Taramalı Elektron Mikroskobu (FE-SEM), Taramalı Elektron Mikroskobu (SEM), Elektron Dağıtılmış X-ışınları (EDX), Fourier Dönüşümlü Kızılötesi Spektroskopi (FT-IR), X-Ray Kırınım Kırınım Ölçer (XRD), Geçirgen Elektron Mikroskobu (TEM), Zeta potansiyel verileri kullanılarak karakterize edilmiştir. Biyolojik olarak üretilen gümüş nanopartiküllerin UV-görünür spektrumunun 15 dakika sonra toplanan spektrumda maksimum 405.68 nm dalga boyunda üretildiği keşfedildi. Ayrıca sentezlenen nanoparçacıkların bir ay sonra alınan UV spektrumunun aynı dalga boyunu ortaya çıkardığı ve ortaya çıkan nanoparçacıkların kararlı olduğu kaydedildi. CS-AgNP'lerin gram-pozitif, gram-negatif ve mantar patojenlerine karşı antimikrobiyal etkileri, minimum inhibisyon konsantrasyonu yaklaşımı kullanılarak değerlendirildi.
Bulgular: Çok düşük konsantrasyonlarda bile gümüş nanoparçacıkların antimikrobiyal aktivitesinin küçülen boyutla arttığı ve yüksek antibakteriyel ve antikandidal uygulamaya sahip olduğu ortaya çıktı.

References

  • 1. Baran A. Eco- friendly, rapid synthesis of silver nanomaterials and their use for biomedical applications, Dicle Univ J Eng. 2021;12(2):329–336.
  • 2. Baran MF, Acay H. Antimicrobial Activity of Silver Nanoparticles Synthesized with Extract of Tomato plant Against Bacterial and Fungal Pathogens. Middle Black Sea J Heal Sci. 2019;67–73.
  • 3. Keskin C, Atalar, MN, Baran M. & Baran A. (2021). Environmentally Friendly Rapid Synthesis of Gold Nanoparticles from Artemisia absinthium Plant Extract and Application of Antimicrobial Activities. Journal of the Institute of Science and Technology, 2021;11(1):365-375. doi: 10.21597/jist.779169 4.
  • 4. Baran MF, Acay H, Keskin C. Determination of Antimicrobial and Toxic Metal Removal Activities of Plant‐Based Synthesized (Capsicum annuum L. Leaves), Ecofriendly, Gold Nanomaterials. Glob Challenges. 2020;4(5):1900104.
  • 5. Baran MF. Synthesis and Antimicrobial Applications of Silver Nanoparticles From artemisia absinthium plant. Biol Chem Res. 2019;6:96–103.
  • 6. Baran. MF. Green Synthesıs of Silver Nanoparticles (Agnps) Usıng Pistacia terebinthus Leaf: Antimicrobial Effect .and Characterization. EJONS Int J Math Eng Nat Sci. 2018;2(2018):67–75.
  • 7. Keskin C, Baran A, Baran MF, Hatipoglu A, Adican MT, Atalar MN, et al. Green Synthesis, Characterization of Gold Nanomaterials using Gundelia tournefortii Leaf Extract, and Determination of Their Nanomedicinal (Antibacterial, Antifungal, and Cytotoxic) Potential. J Nanomater. 2022;2022.
  • 8. Umaz A, Koc A, Baran MF, Keskin C, Atalar MN. Investigation of Antimicrobial Activity and Characterization, Synthesis of Silver Nanoparticles from Hypericum triquetrifoliumi Journal of the Institute of Science and Technology. 2019;9(3):1467–75.
  • 9. Baran MF, Keskin C, Baran A, Hatipoglu A, Yildiztekin M, Küçükaydin S, et al. Green Synthesis of Silver Nanoparticles from Allium cepa L. Peel Extract, Their Antioxidant, Antipathogenic, and Anticholinesterase Activity. Molecules. 2023;28(5).
  • 10. Muraro PCL, Pinheiro LDSM, Chuy G, Vizzotto BS, Pavoski G, Espinosa DCR, et al. Silver nanoparticles from residual biomass: Biosynthesis, characterization and antimicrobial activity. J Biotechnol. 2022;343(5):47–51. 11. Shirmehenji R, Javanshir S, Honarmand M. A Green Approach to the Bio-based Synthesis of Selenium Nanoparticles from Mining Waste. J Clust Sci [Internet]. 2021;32(5):1311–23. https://doi.org/10.1007/s10876-020-01892-7
  • 12. Senthilkumar P, Surendran L, Sudhagar B, Ranjith Santhosh Kumar DS. Facile green synthesis of gold nanoparticles from marine algae Gelidiella acerosa and evaluation of its biological Potential. SN Appl Sci. 2019;1(4):1–12. https://doi.org/10.1007/s42452-019-0284-z
  • 13. Baran MF. Synthesis of silver nanoparticles (AgNP) with Prunus avium cherry leaf extract and investigation of its antimicrobial effect. Dicle Univ J Eng. 2019;10(1):221–7.
  • 14. Sharifi S, Fathi N, Memar MY, Hosseiniyan Khatibi SM, Khalilov R, Negahdari R, et al. Anti-microbial activity of curcumin nanoformulations: New trends and future perspectives. Phyther Res. 2020;34(8):1926–46.
  • 15. Tenzin T, Kaur A. Recent Advances in the Green Synthesis of Gold and Silver Nanostructures for Augmented Anti-Microbal Activity. Iran J Mater Sci Eng. 2022;19(2):1–28.
  • 16. Baran MF. Evaluation of Green Synthesis and Anti-Microbial Activities of AgNPs Using Leaf Extract of Hawthorn Plant. Res Eval Sci Math. 2019;2019(3):110–20.
  • 17. Attar A, Yapaoz MA. Biosynthesis of palladium nanoparticles using Diospyros kaki leaf extract and determination of antibacterial efficacy. Prep Biochem Biotechnol 2018;48(7):629–34. https://doi.org/10.1080/10826068.2018.1479862
  • 18. Baran MF, Saydut A, Umaz A. Silver nanomaterial synthesis and antimicrobial applications. DUJE. 2019;10(2):689–95.
  • 19. Baran MF, Saydut A. Gold nanomaterial synthesis and characterization. Dicle Univ J Eng. 2019;10(3):1033–40. 20. Baran A, Hatipoglu A, Baran MF, Aktepe N. Synthesis of Gold Nanoparticles from Hawthorn (Crataegus monogyna) Fruit Extract and Evaluation of Antimicrobial Activities. Eur J Sci Technol. 2022;(32):974–8.
  • 21. Aslan N, Ceylan B, Koc MM, Findik F. Metallic nanoparticles as X-Ray computed tomography (CT) contrast agents: A review. J Mol Struct. 2020;1219:128599. https://doi.org/10.1016/j.molstruc.2020.128599
  • 22. Canpolat M. Removing Co(II) and Mn(II) ions effectively from aqueous solutions by means of chemically non-processed Mardin stonewaste: Equivalent, kinetic, and thermodynamic investigations Environ Prog Sustainable Energy.2022;e14042.
  • 23. Canpolat M, Altunkaynak Y, Yavuz O. Studies on the Equilibrium, Kinetic, and Thermodynamic Properties of Waste Orange Peel in the Removal of Copper (II) Ions from Aqueous Solutions. AKÜ FEMUBID, 2022;22(3):498-507.
  • 24. Canpolat M, Altunkaynak Y, Yavuz O. Effective removal of Pb(II) ions from aqueous solutions using chemically untreated Midyat stone: Isotherm, kinetic and thermodynamic studies. NOHU J Eng Sci. 2022:11 (4):1085-1096. doi: 10.28948/ngumuh.1089310.
  • 25. Baran MF, Duz MZ. Biosorption of Pb2+ from aqueous solutions by Bacillus licheniformis isolated from Tigris River with a comparative study. International Journal of Latest Engineering and Management Research 2019;04 - 05:108-121.
  • 26. Baran MF, Keskin C, Baran A, Hatipoglu A, Yildiztekin M, Kucukaydin S, et al. Green Synthesis of Silver Nanoparticles from Allium cepa L. Peel Extract, Their Antioxidant, Antipathogenic, and Anticholinesterase Activity. Molecules. 2023; 28(5):2310. https://doi.org/10.3390/molecules28052310.
  • 27. Baran MF, Keskin C, Baran A, Eftekhari A, Omarova S, Khalilov R, et al. The Investigation of the Chemical Composition and Applicability of Gold Nanoparticles Synthesized with Amygdalus communis (Almond) Leaf Aqueous Extract as Antimicrobial and Anticancer Agents. Molecules. 2023;28(6):2428. https://doi.org/10.3390/molecules28062428.
  • 28. Atalar MN, Baran, A, Baran MF, Keskin C, Aktepe N, Yavuz O, et al. (2021). Economic Fast Synthesis of Olive Leaf Extract and Silver Nanoparticles and Biomedical Applications. Particulate Sci. Tech. 2021;1977443, 1–9. doi:10.1080/02726351.2021.1977443
There are 26 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Original Articles
Authors

Mehmet Fırat Baran 0000-0001-8133-6670

Hatice Becerekli 0000-0002-1165-518X

Ülkü Karaman 0000-0001-7027-1613

Publication Date April 30, 2023
Published in Issue Year 2023

Cite

Vancouver Baran MF, Becerekli H, Karaman Ü. Green Synthesis of Silver Nanoparticles Using Safran (Crocus sativus) Purple flower and Their Antimicrobial activity. ODU Tıp Derg. 2023;10(1):8-17.

Cited By