Review
BibTex RIS Cite

Akciğer Hastalıklarında Kitosan Tabanlı Nanopartiküllerin İlaç Taşıyıcı Sistemlerin Uygulamasındaki Gelişmeler

Year 2024, , 99 - 114, 31.08.2024
https://doi.org/10.56941/odutip.1442818

Abstract

Solunum yolu hastalıklarının giderek artan yaygınlığı, dünya genelinde önemli bir küresel halk sağlığı sorunu teşkil ederek dünya
genelindeki başlıca ölüm nedenleri arasında yer almaktadır. Özellikle son iki on yılda astım, kronik obstrüktif akciğer hastalığı,
pnömoni, kistik fibrozis ve akciğer kanseri gibi hastalıkların yanı sıra koronavirüs ailesi tarafından tetiklenen solunum yolu
hastalıkları gibi hastalıklar, küresel ölümlere büyük ölçüde katkıda bulunmuştur. Bu nedenle, bu hastalıklara yönelik terapötik
müdahalelerin etkinliğini artırmaya yönelik birçok çalışma yapılmış, bu çalışmaların özellikle nanotıp destekli akciğer ilaç dağıtımına
odaklandığı gözlemlenmiştir. Bu bağlamda, nanonakliyecilerin geliştirilmesi, geleneksel tedavilerle ilişkilendirilen kısıtlamaları
aşmak için umut vaat eden bir yol olarak ortaya çıkmış ve böylece amaçlanan bölgede ilaç biyoyararlılığını artırmayı ve istenmeyen
yan etkileri en aza indirmeyi hedeflemiştir. Kitosan (CS) kullanılarak şekillendirilen nanopartiküller, kitosanın doğal biyolojik
özelliklerine dayalı olarak diğer nanonakliyecilere göre önemli avantajlar sunmaktadır. Bu avantajlar arasında anti-enflamatuar,
antimikrobiyal ve mukoadhezif özellikler yer almaktadır. Ayrıca, CS nanopartiküller, ilaç kararlılığını artırma, etki süresini uzatma,
ilaç hedeflemeyi iyileştirme, ilaç salınım kinetiğini düzenleme, düşük çözünürlüğe sahip ilaçların çözünürlüğünü artırma ve
hidrofobik ilaçların hücre zarı geçirgenliğini artırma potansiyeline sahiptir. Bu benzersiz özellikler, CS nanopartiküllerini akciğer
uygulaması sonrası ilaç performansını optimize etmek için umut vadeden bir aday olarak konumlandırmaktadır. Bu nedenle, bu
inceleme, kitosan nanopartiküllerinin akciğer ilaç dağıtımı alanındaki potansiyelini aydınlatmayı amaçlamakta ve kitosanın içsel
biyolojik özelliklerinin solunum yolu hastalıklarının tedavi alanını nasıl iyileştirebileceğine dair anlayış sunmaktadır. Ayrıca, CS
nanopartiküllerinin içinde bulunduğu ilaç ile olan etkileşimi ayrıntılı olarak ele alarak solunum yolu hastalıklarının tedavisindeki
olası ilerlemelere dair bir perspektif sunulmaktadır.

References

  • Frick C, Rumgay H, Vignat J, et al. Quantitative estimates of preventable and treatable deaths from 36 cancers worldwide: A population-based study. Lancet Glob Health. 2023;11–e1712.
  • Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics. 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–249.
  • Zhong L, Li Y, Xiong L, et al. Small molecules in targeted cancer therapy: Advances, challenges and future perspectives. Signal Transduct Target Ther. 2021;6:201.
  • Riley RS, June CH, Langer R, et al. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov. 2019;18:175–196.
  • Schaue D, McBride WH. Opportunities and challenges of radiotherapy for treating cancer. Nat Rev Clin Oncol. 2015 Sep;12(9):527-40. doi: 10.1038/nrclinonc.2015.120.
  • Bariwal J, Ma HR, Altenberg GA, et al. Nanodiscs: A versatile nanocarrier platform for cancer diagnosis and treatment. Chem Soc Rev. 2022;51:1702–1728.
  • Cheng Z, Li M, Dey R, et al. Nanomaterials for cancer therapy: Current progress and perspectives. J Hematol. Oncol. 2021;14:85.
  • Zeng L, Gowda BHJ, Ahmed MG, et al. Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol. Cancer. 2023;22:10.
  • Pei Z, Cheng S, Ding L, et al. Current perspectives and trends of nanomedicine in cancer: A review and bibliometric analysis. J. Control Release. 2022;352:211–241.
  • Wang Y, Zhang K, Qin X, et al. Biomimetic Nanotheranostics: Red Blood Cell-Based Core-Shell Structured Nanocomplexes for Atherosclerosis Management. Adv. Sci. 2019;6:1900172.
  • Deng G, Sun Z, Li S, et al. Cell-Membrane Immunotherapy Based on Natural Killer Cell Membrane-Coated Nanoparticles for the Effective Inhibition of Primary and Abscopal Tumor Growth. ACS Nano. 2018;12:12096–12108.
  • Wei X, Gao J, Fang RH, et al. Nanoparticles camouflaged in platelet membrane coating as an antibody decoy for the treatment of immune thrombocytopenia. Biomaterials. 2016;111:116–123.
  • Li J, Ai Y, Wang L, et al. Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles. Biomaterials. 2016;76:52–65.
  • Solari FA, Krahn D, Swieringa F, et al. Multi-omics approaches to study platelet mechanisms. Curr Opin Chem Biol. 2023;73:102253.
  • Sekhon UDS, Swingle K, Girish A, et al. Platelet-mimicking procoagulant nanoparticles augment hemostasis in animal models of bleeding. Sci Transl. Med. 2022;14: eabb8975.
  • Gay LJ, Fielding-Habermann B. Contribution of platelets to tumour metastasis. Nat. Rev. Cancer. 2011;11:123–134.
  • Lavergne M, Janus-Bell E, Schaff M, et al. Platelet Integrins in Tumor Metastasis: Do They Represent a Therapeutic Target? Cancers. 2017;9:133.
  • Liang Y, Mak JC. Inhaled therapies for asthma and chronic obstructive pulmonary disease. Curr Pharm Des. 2021;27(12):1469-1481.
  • Dhayanandamoorthy Y, Antoniraj MG, Kandregula CAB, Kandasamy R. Aerosolized hyaluronic acid decorated, ferulic acid loaded chitosan nanoparticle: A promising asthma control strategy. Int J Pharm. 2020;591:119958.
  • Ning S, Zhang T, Lyu M, et al. A type I AIE photosenistizer-loaded biomimetic nanosystem allowing precise depletion of cancer stem cells and prevention of cancer recurrence after radiotherapy. Biomaterials. 2023;295:122034.
  • Zheng X, Song X, Zhu G, Pan D, Li H, Hu J, et al. Nanomedicine combats drug resistance in lung cancer. Adv Mater. 2024;36(3):2308977.
  • Narmani A, Jafari SM. Chitosan-based nanodelivery systems for cancer therapy: Recent advances. Carbohydr Polym. 2021;272:118464.
  • Butcher K, Kannappan V, Kilari RS, Morris MR, McConville C, Armesilla AL, Wang W. Investigation of the key chemical structures involved in the anticancer activity of disulfiram in A549 non-small cell lung cancer cell line. BMC Cancer. 2018;18(1):1-12.
  • Gao C, Wu Z, Lin Z, et al. Polymeric capsule-cushioned leukocyte cell membrane vesicles as a biomimetic delivery platform. Nanoscale. 2016;8:3548–3554.
  • Diakos CI, Charles KA, McMillan DC, et al. Cancer-related inflammation and treatment effectiveness. Lancet Oncol. 2014;15–e503.
  • Mantovani A, Allavena P, Sica A, et al. Cancer-related inflammation. Nature. 2008;454:436–444.
  • Wynn TA, Vannella KM. Macrophages in Tissue Repair and Fibrosis. Immunity. 2016;44:450–462.
  • Chan JD, Lai J, Slaney CY, et al. Cellular networks controlling T cell persistence in adoptive cell therapy. Nat. Rev. Immunol. 2021;21:769–784.
  • Restifo NP, Dudley ME, Rosenberg SA. Adoptive immunotherapy for cancer: Harnessing the T cell response. Nat. Rev. Immunol. 2012;12:269–281.
  • Siska PJ, Rathmell JC. T cell metabolic fitness in antitumor immunity. Trends Immunol. 2015;36:257–264.
  • Kang M, Hong J, Jung M, et al. T-Cell-Mimicking Nanoparticles for Cancer Immunotherapy. Adv. Mater. 2020;32.
  • Liu T, Zhou Z, Zhang M, et al. Cuproptosis-immunotherapy using PD-1 overexpressing T cell membrane-coated nanosheets efficiently treats tumor. J Control. Release. 2023;362:502–512.
  • Wang W, Wu F, Mohammadniaei M, et al. Genetically edited T-cell membrane-coated AIEgen nanoparticles effectively prevents glioblastoma recurrence. Biomaterials. 2023;293:121981.
  • O’Brien KL, Finlay DK. Immunometabolism and natural killer cell responses. Nat. Rev. Immunol. 2019;19:282–290.
  • Wu SY, Fu T, Jiang YZ, et al. Natural killer cells in cancer biology and therapy. Mol Cancer. 2020;19:120.
  • Zhang L, Zhang Y, Wang X, et al. A Trojan-Horse-Like Biomimetic Nano-NK to Elicit an Immunostimulatory Tumor Microenvironment for Enhanced GBM Chemo-Immunotherapy. Small. 2023;19:e2301439.
  • Galipeau J, Sensebé L. Mesenchymal Stromal Cells: Clinical Challenges and Therapeutic Opportunities. Cell Stem Cell. 2018;22:824–833. Lan T, Luo M, Wei X. Mesenchymal stem/stromal cells in cancer therapy. J. Hematol. Oncol. 2021;14:195.
  • Lan T, Luo M, Wei X. Mesenchymal stem/stromal cells in cancer therapy. J. Hematol. Oncol. 2021;14:195.
  • Timaner M, Letko-Khait N, Kotsofruk R, et al. Therapy-Educated Mesenchymal Stem Cells Enrich for Tumor-Initiating Cells. Cancer Res. 2018;78:1253–1265.
  • Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2016;138(1):16-27.
  • Tashkin DP, Strange C. Inhaled corticosteroids for chronic obstructive pulmonary disease: what is their role in therapy?. Int J Chron Obstruct Pulmon Dis. 2018;13:2587-2601.
  • Larj MJ, Bleecker ER. Therapeutic responses in asthma and COPD: corticosteroids. Chest. 2004;126(2 Suppl):138S-149S.
  • Yang N, Ding Y, Zhang Y, et al. Surface Functionalization of Polymeric Nanoparticles with Umbilical Cord-Derived Mesenchymal Stem Cell Membrane for Tumor-Targeted Therapy. ACS Appl. Mater. Interfaces. 2018;10:22963–22973.
  • Gao C, Lin Z, Jurado-Sánchez B, et al. Stem Cell Membrane-Coated Nanogels for Highly Efficient In Vivo Tumor Targeted Drug Delivery. Small. 2016;12:4056–4062.
  • Park J.Y., Park J.Y., Jeong Y.G., et al. Pancreatic Tumor-Targeting Stealth Nanoparticle Therapeutics. Adv. Mater. 2023; 35:e2300934.
  • Chen Q, Zhang L, Li L, et al. Cancer cell membrane-coated nanoparticles for bimodal ımaging-guided photothermal therapy and checkpoint-enhanced ımmunotherapy against cancer. J. Nanobiotechnol. 2021; 19:449.
  • Zheng Y., Li S., Zhang S., et al. Cell membrane-coated nanoparticles for cancer ımmunotherapy. Acta Pharm. Sin. B. 2022; 12:3233–3254.
  • Zacaron TM, Silva MLSE, Costa MP, Silva DME, Silva AC, Apolônio ACM, et al. advancements in chitosan-based nanoparticles for pulmonary drug delivery. Polymers (Basel). 2023; 15(18):3849.
  • Li Z., Cai H., Li Z., et al. A tumor cell membrane-coated self-amplified nanosystem as a nanovaccine to boost the therapeutic effect of anti-pd-l1 antibody. Bioact. Mater. 2023; 21:299–312.
  • Xiong J, Wu M, Chen J, et al. Cancer-Erythrocyte Hybrid Membrane-Camouflaged Magnetic Nanoparticles with Enhanced Photothermal-Immunotherapy for Ovarian Cancer. ACS Nano. 2021;15:19756–19770.
  • Cui J, Zhang F., Yan D, Han T, Wang L, Wang D, Tang BZ. "Trojan Horse" Phototheranostics: Fine-Tuning NIR-II AIEgen Camouflaged by Cancer Cell Membrane for Homologous-Targeting Multimodal Imaging-Guided Photothermal Therapy. Adv. Mater. 2023;35:e2302639.

Progress in Utilizing Chitosan-Based Nanoparticles for Pulmonary Drug Administration

Year 2024, , 99 - 114, 31.08.2024
https://doi.org/10.56941/odutip.1442818

Abstract

The escalating prevalence of respiratory ailments poses a significant global public health challenge, ranking among the primary
causes of mortality worldwide. Notably, diseases such as asthma, chronic obstructive pulmonary disease, pneumonia, cystic fibrosis,
and lung cancer, alongside the emergence of respiratory diseases, notably those induced by the coronavirus family, have contributed
substantially to global fatalities in the past two decades. Consequently, numerous studies have been undertaken to enhance the
effectiveness of therapeutic interventions against these diseases, with a particular emphasis on nanomedicine-driven pulmonary drug
delivery. As a result, the development of nanocarriers has emerged as a promising avenue to surmount the constraints associated with
traditional therapies, aiming to elevate drug bioavailability at the intended site while minimizing undesired side effects. Within this
domain, nanoparticles fashioned from chitosan (CS) exhibit distinct advantages over alternative nanocarriers owing to the inherent
biological properties of chitosan, including its anti-inflammatory, antimicrobial, and mucoadhesive attributes. Furthermore, CS
nanoparticles have demonstrated the potential to augment drug stability, extend the duration of action, refine drug targeting, regulate
drug release kinetics, optimize the dissolution of poorly soluble drugs, and enhance the cell membrane permeability of hydrophobic
drugs. These unique properties position CS nanoparticles as a promising candidate for optimizing drug performance following
pulmonary administration. Consequently, this review endeavors to elucidate the potential of chitosan nanoparticles in the realm of
pulmonary drug delivery, shedding light on how their intrinsic biological characteristics can ameliorate the treatment landscape of
pulmonary diseases. Emphasis is placed on delineating the synergistic interplay between chitosan nanoparticles and the encapsulated
drug, thereby offering insights into the prospective advancements in treating respiratory ailments.

References

  • Frick C, Rumgay H, Vignat J, et al. Quantitative estimates of preventable and treatable deaths from 36 cancers worldwide: A population-based study. Lancet Glob Health. 2023;11–e1712.
  • Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics. 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–249.
  • Zhong L, Li Y, Xiong L, et al. Small molecules in targeted cancer therapy: Advances, challenges and future perspectives. Signal Transduct Target Ther. 2021;6:201.
  • Riley RS, June CH, Langer R, et al. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov. 2019;18:175–196.
  • Schaue D, McBride WH. Opportunities and challenges of radiotherapy for treating cancer. Nat Rev Clin Oncol. 2015 Sep;12(9):527-40. doi: 10.1038/nrclinonc.2015.120.
  • Bariwal J, Ma HR, Altenberg GA, et al. Nanodiscs: A versatile nanocarrier platform for cancer diagnosis and treatment. Chem Soc Rev. 2022;51:1702–1728.
  • Cheng Z, Li M, Dey R, et al. Nanomaterials for cancer therapy: Current progress and perspectives. J Hematol. Oncol. 2021;14:85.
  • Zeng L, Gowda BHJ, Ahmed MG, et al. Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol. Cancer. 2023;22:10.
  • Pei Z, Cheng S, Ding L, et al. Current perspectives and trends of nanomedicine in cancer: A review and bibliometric analysis. J. Control Release. 2022;352:211–241.
  • Wang Y, Zhang K, Qin X, et al. Biomimetic Nanotheranostics: Red Blood Cell-Based Core-Shell Structured Nanocomplexes for Atherosclerosis Management. Adv. Sci. 2019;6:1900172.
  • Deng G, Sun Z, Li S, et al. Cell-Membrane Immunotherapy Based on Natural Killer Cell Membrane-Coated Nanoparticles for the Effective Inhibition of Primary and Abscopal Tumor Growth. ACS Nano. 2018;12:12096–12108.
  • Wei X, Gao J, Fang RH, et al. Nanoparticles camouflaged in platelet membrane coating as an antibody decoy for the treatment of immune thrombocytopenia. Biomaterials. 2016;111:116–123.
  • Li J, Ai Y, Wang L, et al. Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles. Biomaterials. 2016;76:52–65.
  • Solari FA, Krahn D, Swieringa F, et al. Multi-omics approaches to study platelet mechanisms. Curr Opin Chem Biol. 2023;73:102253.
  • Sekhon UDS, Swingle K, Girish A, et al. Platelet-mimicking procoagulant nanoparticles augment hemostasis in animal models of bleeding. Sci Transl. Med. 2022;14: eabb8975.
  • Gay LJ, Fielding-Habermann B. Contribution of platelets to tumour metastasis. Nat. Rev. Cancer. 2011;11:123–134.
  • Lavergne M, Janus-Bell E, Schaff M, et al. Platelet Integrins in Tumor Metastasis: Do They Represent a Therapeutic Target? Cancers. 2017;9:133.
  • Liang Y, Mak JC. Inhaled therapies for asthma and chronic obstructive pulmonary disease. Curr Pharm Des. 2021;27(12):1469-1481.
  • Dhayanandamoorthy Y, Antoniraj MG, Kandregula CAB, Kandasamy R. Aerosolized hyaluronic acid decorated, ferulic acid loaded chitosan nanoparticle: A promising asthma control strategy. Int J Pharm. 2020;591:119958.
  • Ning S, Zhang T, Lyu M, et al. A type I AIE photosenistizer-loaded biomimetic nanosystem allowing precise depletion of cancer stem cells and prevention of cancer recurrence after radiotherapy. Biomaterials. 2023;295:122034.
  • Zheng X, Song X, Zhu G, Pan D, Li H, Hu J, et al. Nanomedicine combats drug resistance in lung cancer. Adv Mater. 2024;36(3):2308977.
  • Narmani A, Jafari SM. Chitosan-based nanodelivery systems for cancer therapy: Recent advances. Carbohydr Polym. 2021;272:118464.
  • Butcher K, Kannappan V, Kilari RS, Morris MR, McConville C, Armesilla AL, Wang W. Investigation of the key chemical structures involved in the anticancer activity of disulfiram in A549 non-small cell lung cancer cell line. BMC Cancer. 2018;18(1):1-12.
  • Gao C, Wu Z, Lin Z, et al. Polymeric capsule-cushioned leukocyte cell membrane vesicles as a biomimetic delivery platform. Nanoscale. 2016;8:3548–3554.
  • Diakos CI, Charles KA, McMillan DC, et al. Cancer-related inflammation and treatment effectiveness. Lancet Oncol. 2014;15–e503.
  • Mantovani A, Allavena P, Sica A, et al. Cancer-related inflammation. Nature. 2008;454:436–444.
  • Wynn TA, Vannella KM. Macrophages in Tissue Repair and Fibrosis. Immunity. 2016;44:450–462.
  • Chan JD, Lai J, Slaney CY, et al. Cellular networks controlling T cell persistence in adoptive cell therapy. Nat. Rev. Immunol. 2021;21:769–784.
  • Restifo NP, Dudley ME, Rosenberg SA. Adoptive immunotherapy for cancer: Harnessing the T cell response. Nat. Rev. Immunol. 2012;12:269–281.
  • Siska PJ, Rathmell JC. T cell metabolic fitness in antitumor immunity. Trends Immunol. 2015;36:257–264.
  • Kang M, Hong J, Jung M, et al. T-Cell-Mimicking Nanoparticles for Cancer Immunotherapy. Adv. Mater. 2020;32.
  • Liu T, Zhou Z, Zhang M, et al. Cuproptosis-immunotherapy using PD-1 overexpressing T cell membrane-coated nanosheets efficiently treats tumor. J Control. Release. 2023;362:502–512.
  • Wang W, Wu F, Mohammadniaei M, et al. Genetically edited T-cell membrane-coated AIEgen nanoparticles effectively prevents glioblastoma recurrence. Biomaterials. 2023;293:121981.
  • O’Brien KL, Finlay DK. Immunometabolism and natural killer cell responses. Nat. Rev. Immunol. 2019;19:282–290.
  • Wu SY, Fu T, Jiang YZ, et al. Natural killer cells in cancer biology and therapy. Mol Cancer. 2020;19:120.
  • Zhang L, Zhang Y, Wang X, et al. A Trojan-Horse-Like Biomimetic Nano-NK to Elicit an Immunostimulatory Tumor Microenvironment for Enhanced GBM Chemo-Immunotherapy. Small. 2023;19:e2301439.
  • Galipeau J, Sensebé L. Mesenchymal Stromal Cells: Clinical Challenges and Therapeutic Opportunities. Cell Stem Cell. 2018;22:824–833. Lan T, Luo M, Wei X. Mesenchymal stem/stromal cells in cancer therapy. J. Hematol. Oncol. 2021;14:195.
  • Lan T, Luo M, Wei X. Mesenchymal stem/stromal cells in cancer therapy. J. Hematol. Oncol. 2021;14:195.
  • Timaner M, Letko-Khait N, Kotsofruk R, et al. Therapy-Educated Mesenchymal Stem Cells Enrich for Tumor-Initiating Cells. Cancer Res. 2018;78:1253–1265.
  • Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2016;138(1):16-27.
  • Tashkin DP, Strange C. Inhaled corticosteroids for chronic obstructive pulmonary disease: what is their role in therapy?. Int J Chron Obstruct Pulmon Dis. 2018;13:2587-2601.
  • Larj MJ, Bleecker ER. Therapeutic responses in asthma and COPD: corticosteroids. Chest. 2004;126(2 Suppl):138S-149S.
  • Yang N, Ding Y, Zhang Y, et al. Surface Functionalization of Polymeric Nanoparticles with Umbilical Cord-Derived Mesenchymal Stem Cell Membrane for Tumor-Targeted Therapy. ACS Appl. Mater. Interfaces. 2018;10:22963–22973.
  • Gao C, Lin Z, Jurado-Sánchez B, et al. Stem Cell Membrane-Coated Nanogels for Highly Efficient In Vivo Tumor Targeted Drug Delivery. Small. 2016;12:4056–4062.
  • Park J.Y., Park J.Y., Jeong Y.G., et al. Pancreatic Tumor-Targeting Stealth Nanoparticle Therapeutics. Adv. Mater. 2023; 35:e2300934.
  • Chen Q, Zhang L, Li L, et al. Cancer cell membrane-coated nanoparticles for bimodal ımaging-guided photothermal therapy and checkpoint-enhanced ımmunotherapy against cancer. J. Nanobiotechnol. 2021; 19:449.
  • Zheng Y., Li S., Zhang S., et al. Cell membrane-coated nanoparticles for cancer ımmunotherapy. Acta Pharm. Sin. B. 2022; 12:3233–3254.
  • Zacaron TM, Silva MLSE, Costa MP, Silva DME, Silva AC, Apolônio ACM, et al. advancements in chitosan-based nanoparticles for pulmonary drug delivery. Polymers (Basel). 2023; 15(18):3849.
  • Li Z., Cai H., Li Z., et al. A tumor cell membrane-coated self-amplified nanosystem as a nanovaccine to boost the therapeutic effect of anti-pd-l1 antibody. Bioact. Mater. 2023; 21:299–312.
  • Xiong J, Wu M, Chen J, et al. Cancer-Erythrocyte Hybrid Membrane-Camouflaged Magnetic Nanoparticles with Enhanced Photothermal-Immunotherapy for Ovarian Cancer. ACS Nano. 2021;15:19756–19770.
  • Cui J, Zhang F., Yan D, Han T, Wang L, Wang D, Tang BZ. "Trojan Horse" Phototheranostics: Fine-Tuning NIR-II AIEgen Camouflaged by Cancer Cell Membrane for Homologous-Targeting Multimodal Imaging-Guided Photothermal Therapy. Adv. Mater. 2023;35:e2302639.
There are 51 citations in total.

Details

Primary Language English
Subjects Medical Pharmacology, Chest Diseases
Journal Section Review
Authors

Gamze Mercan 0000-0001-5515-999X

Zümrüt Varol Selçuk 0000-0001-5015-0291

Publication Date August 31, 2024
Submission Date February 25, 2024
Acceptance Date August 29, 2024
Published in Issue Year 2024

Cite

Vancouver Mercan G, Varol Selçuk Z. Progress in Utilizing Chitosan-Based Nanoparticles for Pulmonary Drug Administration. ODU Tıp Derg. 2024;11(2):99-114.