Review
BibTex RIS Cite

Adverse Effects of Electromagnetic Fields on The Central Nervous System: A Review

Year 2025, Volume: 12 Issue: 3, 158 - 169, 31.12.2025
https://doi.org/10.56941/odutip.1810345

Abstract

With the rapid advancement of technology in recent years, exposure to electromagnetic fields (EMFs) has become an integral part of daily life. Electromagnetic fields emitted by both natural and artificial sources have attracted increasing attention, particularly due to their potential biological effects on the central nervous system (CNS). Current literature suggests that EMF exposure may be associated with increased blood–brain barrier permeability, oxidative stress, altered neurotransmitter levels, impaired learning and memory processes, neurodevelopmental alterations, and potential neurodegenerative outcomes. Furthermore, conflicting findings have been reported regarding the relationship between radiofrequency EMFs and extremely low-frequency EMFs and the development of brain tumors, and the World Health Organization has classified radiofrequency EMFs as “possibly carcinogenic to humans.” It is further emphasized that critical developmental stages, such as childhood and the prenatal period, are particularly susceptible to EMF-related effects. While some findings indicate potential therapeutic applications of EMFs, the majority highlight adverse neurological outcomes. Given the widespread prevalence of EMF exposure in modern society, long-term, standardized, and multifaceted studies are required to elucidate the underlying mechanisms and clarify their effects on the CNS.

Ethical Statement

This article is a review of previously published literature. Ethical approval is not required as it does not contain any studies with human participants or animals conducted by the authors. All references have been appropriately cited.

Supporting Institution

The authors declared that this study has not received no financial support.

References

  • Hu C, Zuo H, Li Y. Effects of radiofrequency electromagnetic radiation on neurotransmitters in the brain. Front Public Health. 2021;9:1139.
  • Tokpınar A, Altuntaş E, Değermenci M, Yılmaz H, Baş O. The impact of electromagnetic fields on human health: a review. Mid Blac Sea J Health Sci. 2024;10(2):229–38.
  • Kocaman A, Altun G, Kaplan AA, Deniz ÖG, Yurt KK, Kaplan S. Genotoxic and carcinogenic effects of non-ionizing electromagnetic fields. Environ Res. 2018;163:71–9.
  • Eskandani R, Zibaii MI. Unveiling the biological effects of radio-frequency and extremely-low frequency electromagnetic fields on the central nervous system performance. Bioimpacts. 2024;14(4):30064.
  • Tokpinar A, Nisari M, Yilmaz S, Yay A, Yildiz OG, Balcioğlu E, et al. The effect of ionizing radiation on the fetal bone development in pregnant rats: role of melatonin. Microsc Res Tech. 2024;87(1):95–104.
  • Karmaker N, Maraz KM, Islam F, Haque MM, Mollah MZI, Faruque MRI, et al. Fundamental characteristics and application of radiation. GSC Adv Res Rev. 2021;7(1):64–72.
  • Kim JH, Lee JK, Kim HG, Kim KB, Kim HR. Possible effects of radiofrequency electromagnetic field exposure on central nerve system. Biomol Ther (Seoul). 2019;27(3):265–75.
  • Salford L, Nittby H, Brun A, Grafstrom G, Malmgren L, Sommarin M, et al. The mammalian brain in the electromagnetic fields designed by man with special reference to blood-brain barrier function, neuronal damage and possible physical mechanisms. Prog Theor Phys Suppl. 2008;173:283–309.
  • Nittby H, Brun A, Eberhardt J, Malmgren L, Persson BR, Salford LG. Increased blood–brain barrier permeability in mammalian brain 7 days after exposure to the radiation from a GSM-900 mobile phone. Pathophysiology. 2009;16:103–12.
  • Sutton CH, Carroll FB. Effects of microwave-induced hyperthermia on the blood–brain barrier of the rat. Radio Sci. 1979;14:329–34.
  • Cosquer B, Vasconcelos AP, Frohlich J, Cassel JC. Blood-brain barrier and electromagnetic fields: effects of scopolamine methylbromide on working memory after whole-body exposure to 2.45 GHz microwaves in rats. Behav Brain Res. 2005;161:229–37.
  • Al-Sarraf H, Philip L. Effect of hypertension on the integrity of blood brain and blood CSF barriers, cerebral blood flow and CSF secretion in the rat. Brain Res. 2003;975:179–88.
  • Hardell L, Carlberg M, Soderqvist F, Mild KH, Morgan LL. Long-term use of cellular phones and brain tumours: increased risk associated with use for ≥10 years. Occup Environ Med. 2007;64:626–32.
  • Myung SK, Ju W, McDonnell DD, Lee YJ, Kazinets G, Cheng CT, et al. Mobile phone use and risk of tumors: a meta-analysis. J Clin Oncol. 2009;27:5565–72.
  • Wyde ME, Cesta M, Blystone C, Elmore S, Foster P, Hooth M, et al. Report of partial findings from the National Toxicology Program carcinogenesis studies of cell phone radiofrequency radiation in Hsd: Sprague Dawley® SD rats (whole body exposure). BioRxiv. 2016;055699. https://doi.org/10.1101/055699
  • Falcioni L, Bua L, Tibaldi M, Lauriola L, De Angelis F, Gnudi F, et al. Report of final results regarding brain and heart tumors in Sprague-Dawley rats exposed from prenatal life until natural death to mobile phone radiofrequency field representative of a 1.8 GHz GSM base station. Environ Res. 2018;65:496–503.
  • Coble JB, Dosemeci M, Stewart PA, Blair A, Bowman J, Fine HA, et al. Occupational exposure to magnetic fields and the risk of brain tumors. Neuro Oncol. 2009;11:242–9.
  • Akbarnejad Z, Eskandary H, Vergallo C, Nematollahi-Mahani SN, Dini L, Darvishzadeh-Mahani F, et al. Effects of extremely low-frequency pulsed electromagnetic fields (ELF-PEMFs) on glioblastoma cells (U87). Electromagn Biol Med. 2017;36:238–47.
  • Baan R, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, et al. Carcinogenicity of radiofrequency electromagnetic fields. Lancet Oncol. 2011;12:624–6.
  • Ezz HA, Khadrawy Y, Ahmed N, Radwan N, Bakry ME. The effect of pulsed electromagnetic radiation from mobile phone on the levels of monoamine neurotransmitters in four different areas of rat brain. Eur Rev Med Pharmacol Sci. 2013;17(13):1782-8.
  • Kim JH, Lee CH, Kim HG, Kim HR. Decreased dopamine in striatum and difficult locomotor recovery from MPTP insult after exposure to radiofrequency electromagnetic fields. Sci Rep. 2019;9:1201.
  • Megha K, Deshmukh PS, Ravi AK, Tripathi AK, Abegaonkar MP, Banerjee BD. Effect of low-intensity microwave radiation on monoamine neurotransmitters and their key regulating enzymes in rat brain. Cell Biochem Biophys. 2015;73:93–100.
  • Cao Z, Zhang H, Tao Y, Liu J. Effects of microwave radiation on lipid peroxidation and the content of neurotransmitters in mice. Wei Sheng Yan Jiu. 2000;29:28–9.
  • Reale M, Angelo C, Costantini E, Tata AM, Regen F, Hellmann-Regen J. Effect of environmental extremely low-frequency electromagnetic fields exposure on inflammatory mediators and serotonin metabolism in a human neuroblastoma cell line. CNS Neurol Disord Drug Targets. 2016;15:1203–15.
  • Salunke BP, Umathe SN, Chavan JG. Involvement of NMDA receptor in low-frequency magnetic field-induced anxiety in mice. Electromagn Biol Med. 2013;33:312–26.
  • Jadidi M, Khatami MS, Mohammad-Pour F, Bandavi A, Rashidy-Pour A, Vafaei AA, et al. Effects of extremely low frequency magnetic field on the development of tolerance to the analgesic effect of morphine in rats. Bioelectromagnetics. 2017;38:618–25.
  • Gilgun-Sherki Y, Melamed E, Offen D. Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology. 2001;40:959–75.
  • Kıvrak EG, Yurt KK, Kaplan AA, Alkan I, Altun G. Effects of electromagnetic fields exposure on the antioxidant defense system. J Microsc Ultrastruct. 2017;5:167–76.
  • Warille AA, Altun G, Elamin AA, Kaplan AA, Mohamed H, Yurt KK, et al. Skeptical approaches concerning the effect of exposure to electromagnetic fields on brain hormones and enzyme activities. J Microsc Ultrastruct. 2017;5:177–84.
  • Lai H. Neurological effects of static and extremely-low frequency electromagnetic fields. Electromagn Biol Med. 2022;41(2):201–21.
  • Lai H, Singh NP. Magnetic field-induced DNA strand breaks in brain cells of the rat. Environ Health Perspect. 2004;112:687–94.
  • Klimek A, Rogalska J. Extremely low-frequency magnetic field as a stress factor—really detrimental? Insight into literature from the last decade. Brain Sci. 2021;11:174.
  • Abdel-Rassoul G, El-Fateh OA, Salem MA, Michael A, Farahat F, El-Batanouny M, et al. Neurobehavioral effects among inhabitants around mobile phone base stations. Neurotoxicology. 2007;28:434–40.
  • Wang B, Lai H. Acute exposure to pulsed 2450-MHz microwaves affects water-maze performance of rats. Bioelectromagnetics. 2000;21(1):52–6.
  • Son Y, Kim JS, Jeong YJ, Jeong YK, Kwon JH, Choi HD, et al. Long-term RF exposure on behavior and cerebral glucose metabolism in 5xFAD mice. Neurosci Lett. 2018;666:64–9.
  • Keleş Aİ, Yıldırım M, Gedikli Ö, Çolakoğlu S, Kaya H, Baş O, et al. The effects of a continuous 1-h a day 900-MHz electromagnetic field applied throughout early and mid-adolescence on hippocampus morphology and learning behavior in late adolescent male rats. J Chem Neuroanat. 2018;94:46–53.
  • Tattersall JE, Scott IR, Wood SJ, Nettell JJ, Bevir MK, Wang Z, et al. Effects of low intensity radiofrequency electromagnetic fields on electrical activity in rat hippocampal slices. Brain Res. 2001;904:43–53.
  • Xu S, Ning W, Xu Z, Zhou S, Chiang H, Luo J. Chronic exposure to GSM 1800-MHz microwaves reduces excitatory synaptic activity in cultured hippocampal neurons. Neurosci Lett. 2006;398:253–7.
  • Phillips JL, Singh NP, Lai H. Electromagnetic fields and DNA damage. Pathophysiology. 2009;16:79–88.
  • E Odacı, D Ünal, T Mercantepe, Z Topal, H Hancı, S Türedi, et al. Pathological effects of prenatal exposure to a 900 MHz electromagnetic field on the 21-day-old male rat kidney. Biotech Histochem. 2015;90(2):93–101.
  • Kaplan S, Deniz OG, Onger ME, Turkmen AP, Yurt KK, Aydin I, et al. Electromagnetic field and brain development. J Chem Neuroanat. 2016;75:52–61.
  • Bas O, Odaci E, Mollaoglu H, Ucok K, Kaplan S. Chronic prenatal exposure to the 900 megahertz electromagnetic field induces pyramidal cell loss in the hippocampus of newborn rats. Toxicol Ind Health. 2009;25(6):377–84.
  • Bas O, Sengul I, Bas OFM, Hanci H, Degermenci M, Sengul D, et al. Impressions of the chronic 900-MHz electromagnetic field in the prenatal period on Purkinje cells in male rat pup cerebella: is it worth mentioning? Rev Assoc Med Bras. 2022;68(10):1383–8.
  • Aldad TS, Gan G, Gao XB, Taylor HS. Fetal radiofrequency radiation exposure from 800–1900 MHz-rated cellular telephones affects neurodevelopment and behavior in mice. Sci Rep. 2012;2(1):312.
  • Aslan A, İkinci A, Baş O, Sönmez O, Kaya H, Odacı E. Long-term exposure to a continuous 900 MHz electromagnetic field disrupts cerebellar morphology in young adult male rats. Biotech Histochem. 2017;92(5):324–30.
  • Kerimoğlu G, Hancı H, Baş O, Aslan A, Erol HS, Turgut A, et al. Pernicious effects of long-term, continuous 900-MHz electromagnetic field throughout adolescence on hippocampus morphology, biochemistry and pyramidal neuron numbers in 60-day-old Sprague Dawley male rats. J Chem Neuroanat. 2016;77:169–75.
  • Odacı E, İkinci A, Yıldırım M, Kaya H, Akça M, Hancı H, et al. The effects of 900 megahertz electromagnetic field applied in the prenatal period on spinal cord morphology and motor behavior in female rat pups. NeuroQuantology. 2013;11(4):573–81.
  • Leone L, Fusco S, Mastrodonato A, Piacentini R, Barbati SA, Zaffina S, et al. Epigenetic modulation of adult hippocampal neurogenesis by extremely low-frequency electromagnetic fields. Mol Neurobiol. 2014;49:1472–86.
  • Söderqvist F, Carlberg M, Hansson Mild K, Hardell L. Childhood brain tumour risk and its association with wireless phones: a commentary. Environ Health. 2011;10(1):106.
  • Weller SG, McCredden JE, Leach VA, Chu C, Lam AKY. A scoping review and evidence map of radiofrequency field exposure and genotoxicity: assessing in vivo, in vitro, and epidemiological data. Frontiers in Public Health, 2025; 13:1613353.

Elektromanyetik Alanların Merkezi Sinir Sistemi Üzerindeki Olumsuz Etkileri: Derleme

Year 2025, Volume: 12 Issue: 3, 158 - 169, 31.12.2025
https://doi.org/10.56941/odutip.1810345

Abstract

Son yıllarda teknolojinin hızla ilerlemesiyle birlikte, elektromanyetik alanlara (EMA) maruz kalma günlük yaşamın ayrılmaz bir parçası haline gelmiştir. Hem doğal hem de yapay kaynaklardan yayılan elektromanyetik alanlar, özellikle merkezi sinir sistemi (MSS) üzerindeki potansiyel biyolojik etkileri nedeniyle giderek daha fazla ilgi görmektedir. Güncel literatür, EMA maruziyetinin artmış kan-beyin bariyeri geçirgenliği, oksidatif stres, değişen nörotransmitter seviyeleri, bozulmuş öğrenme ve hafıza süreçleri, nörogelişimsel değişiklikler ve olası nörodejeneratif sonuçlarla ilişkili olabileceğini düşündürmektedir. Ayrıca, radyofrekans EMA'ları ve son derece düşük frekanslı EMA'lar ile beyin tümörlerinin gelişimi arasındaki ilişki hakkında çelişkili bulgular bildirilmiştir ve Dünya Sağlık Örgütü radyofrekans EMA'larını "insanlar için olası kanserojen" olarak sınıflandırmıştır. Çocukluk ve doğum öncesi dönem gibi kritik gelişim aşamalarının EMA ile ilişkili etkilere özellikle duyarlı olduğu vurgulanmaktadır. Bazı bulgular EMA'ların potansiyel terapötik uygulamalarına işaret ederken, çoğunluğu olumsuz nörolojik sonuçlara vurgu yapmaktadır. Modern toplumda EMA maruziyetinin yaygınlığı göz önüne alındığında, altta yatan mekanizmaların aydınlatılması ve MSS üzerindeki etkilerinin netleştirilmesi için uzun süreli, standardize edilmiş ve çok yönlü çalışmalara ihtiyaç vardır.

Ethical Statement

Bu makale, daha önce yayınlanmış literatürün bir incelemesidir. Yazarlar tarafından insan katılımcılar veya hayvanlar üzerinde yürütülen herhangi bir çalışma içermediğinden etik onay gerekmemektedir. Tüm kaynaklara uygun şekilde atıfta bulunulmuştur.

Supporting Institution

Yazarlar bu çalışmanın herhangi bir finansal destek almadığını beyan etmişlerdir

References

  • Hu C, Zuo H, Li Y. Effects of radiofrequency electromagnetic radiation on neurotransmitters in the brain. Front Public Health. 2021;9:1139.
  • Tokpınar A, Altuntaş E, Değermenci M, Yılmaz H, Baş O. The impact of electromagnetic fields on human health: a review. Mid Blac Sea J Health Sci. 2024;10(2):229–38.
  • Kocaman A, Altun G, Kaplan AA, Deniz ÖG, Yurt KK, Kaplan S. Genotoxic and carcinogenic effects of non-ionizing electromagnetic fields. Environ Res. 2018;163:71–9.
  • Eskandani R, Zibaii MI. Unveiling the biological effects of radio-frequency and extremely-low frequency electromagnetic fields on the central nervous system performance. Bioimpacts. 2024;14(4):30064.
  • Tokpinar A, Nisari M, Yilmaz S, Yay A, Yildiz OG, Balcioğlu E, et al. The effect of ionizing radiation on the fetal bone development in pregnant rats: role of melatonin. Microsc Res Tech. 2024;87(1):95–104.
  • Karmaker N, Maraz KM, Islam F, Haque MM, Mollah MZI, Faruque MRI, et al. Fundamental characteristics and application of radiation. GSC Adv Res Rev. 2021;7(1):64–72.
  • Kim JH, Lee JK, Kim HG, Kim KB, Kim HR. Possible effects of radiofrequency electromagnetic field exposure on central nerve system. Biomol Ther (Seoul). 2019;27(3):265–75.
  • Salford L, Nittby H, Brun A, Grafstrom G, Malmgren L, Sommarin M, et al. The mammalian brain in the electromagnetic fields designed by man with special reference to blood-brain barrier function, neuronal damage and possible physical mechanisms. Prog Theor Phys Suppl. 2008;173:283–309.
  • Nittby H, Brun A, Eberhardt J, Malmgren L, Persson BR, Salford LG. Increased blood–brain barrier permeability in mammalian brain 7 days after exposure to the radiation from a GSM-900 mobile phone. Pathophysiology. 2009;16:103–12.
  • Sutton CH, Carroll FB. Effects of microwave-induced hyperthermia on the blood–brain barrier of the rat. Radio Sci. 1979;14:329–34.
  • Cosquer B, Vasconcelos AP, Frohlich J, Cassel JC. Blood-brain barrier and electromagnetic fields: effects of scopolamine methylbromide on working memory after whole-body exposure to 2.45 GHz microwaves in rats. Behav Brain Res. 2005;161:229–37.
  • Al-Sarraf H, Philip L. Effect of hypertension on the integrity of blood brain and blood CSF barriers, cerebral blood flow and CSF secretion in the rat. Brain Res. 2003;975:179–88.
  • Hardell L, Carlberg M, Soderqvist F, Mild KH, Morgan LL. Long-term use of cellular phones and brain tumours: increased risk associated with use for ≥10 years. Occup Environ Med. 2007;64:626–32.
  • Myung SK, Ju W, McDonnell DD, Lee YJ, Kazinets G, Cheng CT, et al. Mobile phone use and risk of tumors: a meta-analysis. J Clin Oncol. 2009;27:5565–72.
  • Wyde ME, Cesta M, Blystone C, Elmore S, Foster P, Hooth M, et al. Report of partial findings from the National Toxicology Program carcinogenesis studies of cell phone radiofrequency radiation in Hsd: Sprague Dawley® SD rats (whole body exposure). BioRxiv. 2016;055699. https://doi.org/10.1101/055699
  • Falcioni L, Bua L, Tibaldi M, Lauriola L, De Angelis F, Gnudi F, et al. Report of final results regarding brain and heart tumors in Sprague-Dawley rats exposed from prenatal life until natural death to mobile phone radiofrequency field representative of a 1.8 GHz GSM base station. Environ Res. 2018;65:496–503.
  • Coble JB, Dosemeci M, Stewart PA, Blair A, Bowman J, Fine HA, et al. Occupational exposure to magnetic fields and the risk of brain tumors. Neuro Oncol. 2009;11:242–9.
  • Akbarnejad Z, Eskandary H, Vergallo C, Nematollahi-Mahani SN, Dini L, Darvishzadeh-Mahani F, et al. Effects of extremely low-frequency pulsed electromagnetic fields (ELF-PEMFs) on glioblastoma cells (U87). Electromagn Biol Med. 2017;36:238–47.
  • Baan R, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, et al. Carcinogenicity of radiofrequency electromagnetic fields. Lancet Oncol. 2011;12:624–6.
  • Ezz HA, Khadrawy Y, Ahmed N, Radwan N, Bakry ME. The effect of pulsed electromagnetic radiation from mobile phone on the levels of monoamine neurotransmitters in four different areas of rat brain. Eur Rev Med Pharmacol Sci. 2013;17(13):1782-8.
  • Kim JH, Lee CH, Kim HG, Kim HR. Decreased dopamine in striatum and difficult locomotor recovery from MPTP insult after exposure to radiofrequency electromagnetic fields. Sci Rep. 2019;9:1201.
  • Megha K, Deshmukh PS, Ravi AK, Tripathi AK, Abegaonkar MP, Banerjee BD. Effect of low-intensity microwave radiation on monoamine neurotransmitters and their key regulating enzymes in rat brain. Cell Biochem Biophys. 2015;73:93–100.
  • Cao Z, Zhang H, Tao Y, Liu J. Effects of microwave radiation on lipid peroxidation and the content of neurotransmitters in mice. Wei Sheng Yan Jiu. 2000;29:28–9.
  • Reale M, Angelo C, Costantini E, Tata AM, Regen F, Hellmann-Regen J. Effect of environmental extremely low-frequency electromagnetic fields exposure on inflammatory mediators and serotonin metabolism in a human neuroblastoma cell line. CNS Neurol Disord Drug Targets. 2016;15:1203–15.
  • Salunke BP, Umathe SN, Chavan JG. Involvement of NMDA receptor in low-frequency magnetic field-induced anxiety in mice. Electromagn Biol Med. 2013;33:312–26.
  • Jadidi M, Khatami MS, Mohammad-Pour F, Bandavi A, Rashidy-Pour A, Vafaei AA, et al. Effects of extremely low frequency magnetic field on the development of tolerance to the analgesic effect of morphine in rats. Bioelectromagnetics. 2017;38:618–25.
  • Gilgun-Sherki Y, Melamed E, Offen D. Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology. 2001;40:959–75.
  • Kıvrak EG, Yurt KK, Kaplan AA, Alkan I, Altun G. Effects of electromagnetic fields exposure on the antioxidant defense system. J Microsc Ultrastruct. 2017;5:167–76.
  • Warille AA, Altun G, Elamin AA, Kaplan AA, Mohamed H, Yurt KK, et al. Skeptical approaches concerning the effect of exposure to electromagnetic fields on brain hormones and enzyme activities. J Microsc Ultrastruct. 2017;5:177–84.
  • Lai H. Neurological effects of static and extremely-low frequency electromagnetic fields. Electromagn Biol Med. 2022;41(2):201–21.
  • Lai H, Singh NP. Magnetic field-induced DNA strand breaks in brain cells of the rat. Environ Health Perspect. 2004;112:687–94.
  • Klimek A, Rogalska J. Extremely low-frequency magnetic field as a stress factor—really detrimental? Insight into literature from the last decade. Brain Sci. 2021;11:174.
  • Abdel-Rassoul G, El-Fateh OA, Salem MA, Michael A, Farahat F, El-Batanouny M, et al. Neurobehavioral effects among inhabitants around mobile phone base stations. Neurotoxicology. 2007;28:434–40.
  • Wang B, Lai H. Acute exposure to pulsed 2450-MHz microwaves affects water-maze performance of rats. Bioelectromagnetics. 2000;21(1):52–6.
  • Son Y, Kim JS, Jeong YJ, Jeong YK, Kwon JH, Choi HD, et al. Long-term RF exposure on behavior and cerebral glucose metabolism in 5xFAD mice. Neurosci Lett. 2018;666:64–9.
  • Keleş Aİ, Yıldırım M, Gedikli Ö, Çolakoğlu S, Kaya H, Baş O, et al. The effects of a continuous 1-h a day 900-MHz electromagnetic field applied throughout early and mid-adolescence on hippocampus morphology and learning behavior in late adolescent male rats. J Chem Neuroanat. 2018;94:46–53.
  • Tattersall JE, Scott IR, Wood SJ, Nettell JJ, Bevir MK, Wang Z, et al. Effects of low intensity radiofrequency electromagnetic fields on electrical activity in rat hippocampal slices. Brain Res. 2001;904:43–53.
  • Xu S, Ning W, Xu Z, Zhou S, Chiang H, Luo J. Chronic exposure to GSM 1800-MHz microwaves reduces excitatory synaptic activity in cultured hippocampal neurons. Neurosci Lett. 2006;398:253–7.
  • Phillips JL, Singh NP, Lai H. Electromagnetic fields and DNA damage. Pathophysiology. 2009;16:79–88.
  • E Odacı, D Ünal, T Mercantepe, Z Topal, H Hancı, S Türedi, et al. Pathological effects of prenatal exposure to a 900 MHz electromagnetic field on the 21-day-old male rat kidney. Biotech Histochem. 2015;90(2):93–101.
  • Kaplan S, Deniz OG, Onger ME, Turkmen AP, Yurt KK, Aydin I, et al. Electromagnetic field and brain development. J Chem Neuroanat. 2016;75:52–61.
  • Bas O, Odaci E, Mollaoglu H, Ucok K, Kaplan S. Chronic prenatal exposure to the 900 megahertz electromagnetic field induces pyramidal cell loss in the hippocampus of newborn rats. Toxicol Ind Health. 2009;25(6):377–84.
  • Bas O, Sengul I, Bas OFM, Hanci H, Degermenci M, Sengul D, et al. Impressions of the chronic 900-MHz electromagnetic field in the prenatal period on Purkinje cells in male rat pup cerebella: is it worth mentioning? Rev Assoc Med Bras. 2022;68(10):1383–8.
  • Aldad TS, Gan G, Gao XB, Taylor HS. Fetal radiofrequency radiation exposure from 800–1900 MHz-rated cellular telephones affects neurodevelopment and behavior in mice. Sci Rep. 2012;2(1):312.
  • Aslan A, İkinci A, Baş O, Sönmez O, Kaya H, Odacı E. Long-term exposure to a continuous 900 MHz electromagnetic field disrupts cerebellar morphology in young adult male rats. Biotech Histochem. 2017;92(5):324–30.
  • Kerimoğlu G, Hancı H, Baş O, Aslan A, Erol HS, Turgut A, et al. Pernicious effects of long-term, continuous 900-MHz electromagnetic field throughout adolescence on hippocampus morphology, biochemistry and pyramidal neuron numbers in 60-day-old Sprague Dawley male rats. J Chem Neuroanat. 2016;77:169–75.
  • Odacı E, İkinci A, Yıldırım M, Kaya H, Akça M, Hancı H, et al. The effects of 900 megahertz electromagnetic field applied in the prenatal period on spinal cord morphology and motor behavior in female rat pups. NeuroQuantology. 2013;11(4):573–81.
  • Leone L, Fusco S, Mastrodonato A, Piacentini R, Barbati SA, Zaffina S, et al. Epigenetic modulation of adult hippocampal neurogenesis by extremely low-frequency electromagnetic fields. Mol Neurobiol. 2014;49:1472–86.
  • Söderqvist F, Carlberg M, Hansson Mild K, Hardell L. Childhood brain tumour risk and its association with wireless phones: a commentary. Environ Health. 2011;10(1):106.
  • Weller SG, McCredden JE, Leach VA, Chu C, Lam AKY. A scoping review and evidence map of radiofrequency field exposure and genotoxicity: assessing in vivo, in vitro, and epidemiological data. Frontiers in Public Health, 2025; 13:1613353.
There are 50 citations in total.

Details

Primary Language English
Subjects Clinical Sciences (Other)
Journal Section Review
Authors

Burak Oguzhan Karapinar 0000-0001-9005-5504

Emrah Altuntas 0000-0002-1180-6275

Tuba Gul 0000-0001-6003-5975

Adem Tokpinar 0000-0001-7661-9588

Muhammet Degermenci 0000-0002-4751-6202

Orhan Bas 0000-0002-7449-2699

Submission Date October 24, 2025
Acceptance Date December 24, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 12 Issue: 3

Cite

Vancouver Karapinar BO, Altuntas E, Gul T, Tokpinar A, Degermenci M, Bas O. Adverse Effects of Electromagnetic Fields on The Central Nervous System: A Review. ODU Med J. 2025;12(3):158-69.