Research Article
BibTex RIS Cite

Sıçan Koklear Nuklesunun Postnatal Gelişimi: Fiziksel Fraksiyonlama Yöntemi ile Nöron Sayımı

Year 2021, Volume: 8 Issue: 2, 7 - 11, 31.08.2021

Abstract

Amaç: Koklear nukleus (KN), beyin sapının dorsolateralinde pons ile medulla oblongata sınırında yerleşim gösteren kohleadan gelen tüm işitme yollarını alan ve işitsel bilgilerin işlendiği ilk merkezi sinir sistem kompleksidir. Farklı yaş grubundaki sıçanların koklear nukleuslarındaki toplam nöron sayılarının fiziksel fraksiyonlama yöntemi ile hesaplanması amaçlanmıştır.
Yöntemler: Sayımlar, koklear nukleusun ventral kısmında (VKN) gerçekleştirildi. Çalışmada postnatal (P) 5, 7, 9, 12, 15, 30 günlük gruplar kullanıldı. Rutin parafin doku takibi işleminden sonra, VKN'den koronal düzlemde 4 µm kalınlığında kesitler alındı. Her 30. kesit çifti örneklendi ve cresyl violet acetate ile boyandı. Sistematik örnekleme, eşleştirilmiş kesit alanlarının kaydedilmesi ve eş zamanlı olarak görüntülenmesi işlemleri laboratuvarımızda geliştirilen etkin bir yaklaşım uygulanarak gerçekleştirildi.
Bulgular: Postnatal 12. güne kadar VKN nöronlarının sayısında düzenli bir artış tespit edildi. P3. günde görülen toplam nöron sayısında belirgin bir nöron kaybının ardından önemli bir nörogenez başlamış ve P30. günde toplam nöron sayısının erişkin düzeyine çıktığı görülmüştür. Tüm grup verilerinin normal dağılım gösterdikleri ve varyanslarının homojen olduğu gözlenmiştir (p>0.05). Veriler normal dağılım gösterdiğinden, hayvan grupları arasında bir farklılık olup olmadığı one-way ANOVA ile değerlendirildi ve farklılık olduğu görüldü
Sonuç: Sıçanlarda işitmenin başlangıcında (P10-12. günler) meydana gelen toplam nöron sayısındaki önemli değişiklik, daha önce bildirilen verileri doğrularken bildirilen değerlerin değişikliği ve büyüklüğü ile çelişmiştir.

References

  • 1. Snyder RL and Leake PA. Topography of spiral ganglion projections to cochlear nucleus during postnatal development in cats. J Comparative Neurology. 1997; 384: 293-311.
  • 2. Biacabe B, Chevallier JM, Avan P, Bonfils P. Functional anatomy of auditory brain stem nuclei: application to the anatomical basis of brain stem auditory evoked potentials. Auris Nasus Larynx. 2001;28(1): 85-94.
  • 3. Osen KK. Cytoarchitecture of cochlear nuclei in cat, J Comparative Neurology. 1969;136(4): 453-484. 4. Idrizbegovic E, Bogdanovic N, Canlon B. Modulating calbindin and parvalbumin immunoreactivity in the cochlear nucleus by moderate noise exposure in mice. A quantitative study on the dorsal and posteroventral cochlear nucleus. Brain Research. 1998;800(1): 86-96.
  • 5. Gleich Y, Kadow C, Strutz J. The postnatal growth of cochlear nucleus subdivisions and neuronal somata of the anteroventral cochlear nucleus in the mongolian gerbil (Meriones ungiuculatus). Audiology & Neuro-Otology. 1998;3(1): 1-20.
  • 6. Moore JK, Guan YL, Shi SR. MAP2 expression in developing dendrites of human brain stem auditory neurons. J Chem Neuroanatomy. 1998;16(1): 1-15.
  • 7. Webster DB. Conductive hearing loss affects the growth of cochlear nuclei over an extended period of time. Hearing Research. 1988; 32: 185-192.
  • 8. Tierney TS, Moore DR. Naturally occuring neuron death during postnatal development of gerbil ventral cochlear nucleus begins at the onset of hearing. J Comparative Neurology. 1997;387: 421-429.
  • 9. Ağar E, Korkmaz A, Bosnak M, Demir Ş, Ayyıldız M, Marangoz C. Do cochlear nuclei contribute to auditory lateralization? A stereological evaluation of neuron numbers, Annals of Otology. Rhinology & Laryngology. 1999;108: 661-665.
  • 10. Korkmaz A, Çiftci N, Boşnak M, Ağar E. A simplified application of systematic area sampling and low-cost video recording set up for viewing disector pairs-exemplified in the rat cochlear nucleus. J Microsc. 2000;200(3): 269-276.
  • 11. Ayas B, Korkmaz A, Gürgör PN. Simultaneous Viewing of Disector Pairs with a Frame Grabber: A Practical and Economic Application of the Physical Disector on Systematically Sampled Section Fields. Cell & Tissue Biology Research, 9th National Histology and Embryology Congress with International Contribution; May 20-23; Adana-Turkey: 2008.
  • 12. Gundersen HJG. Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones, in memory of William R Thompson. Journal of Microscopy. 1986;143: 3-45.
  • 13. Pakkenberg B, Gundersen HJG. Total numbers of neurons and glial cells in human brain nuclei estimated by disector and fractionator. Journal of Microscopy. 1988;150: 1-20.
  • 14. Kaya M. Elektron mikroskopi teknikleri. Bulletion of the Çukurova Medical Faculty. 1984;9: 61-71. 15. Bancroft JD and Stevens A. theory and practice of histological techniques. Fourth Edition. Churchill Livingstone. 1996.
  • 16. Mlonyeni M. The late stages of the development of the primary cochlear nuclei in mice. Brain Research. 1967;4: 334-344.
  • 17. Tümkaya L. Sıçanlarda kohlear nuklesun postnatal gelişiminin stereolojik metotlarla araştırılması. Doktora tezi. OMU Sağlık Bilimleri Enstitüsü. 2003.
  • 18. Ayas B, Korkmaz A, Çiftçi N. İşitme öncesi ve sonrası dönemlerindeki sıçanlarda koklear nukleusun kantitatif özelliklerinin stereolojik metotlarla belirlenmesi. VI. Ulusal Histoloji-Embriyoloji Kongresi, Bildiri Özeti Kitapçığı, İ.Ü. Cerrahpaşa Tıp Fakültesi. İstanbul-Türkiye: 2002.

Postnatal Development of Rat Cochlear Nucleus: Neuron Counting with the Physical Fractionator Method

Year 2021, Volume: 8 Issue: 2, 7 - 11, 31.08.2021

Abstract

Objective: The cochlear nucleus (CN) is the first central nervous system complex that receives all auditory pathways from the cochlea, located at the border of the pons and medulla oblongata in the dorsolateral of the brain stem, and is the first central nervous system complex where auditory information is processed. It was aimed to estimate the total number of neurons in the cochlear nuclei of rats in different age groups with the physical fractionator method.
Methods: Counts were performed in the ventral part of the cochlear nucleus (VCN). Postnatal (P) 5, 7, 9, 12, 15 and 30 day groups were used in the study. After routine paraffin tissue follow-up, 4 µm thick sections were taken from the VCN in the coronal plane. Each 30th pair of sections was sampled and stained with cresyl violet acetate. Systematic sampling, recording and simultaneous imaging of paired cross-sectional areas were performed using an effective approach developed in our laboratory.
Results: An orderly increase in the number of VCN neurons was detected until the postnatal twelfth day. After a significant loss of neurons in the total number of neurons seen on the third day, a significant neurogenesis started, and it was observed that the total number of neurons increased to the adult level on the thirtieth day. It was observed that all group data showed normal distribution and their variances were homogeneous (p>0.05). Since the data showed a normal distribution, one-way ANOVA was used to evaluate whether there was a difference between animal groups and there was a difference.
Conclusion: The significant change in the total number of neurons at the onset of hearing (days P10-12) in rats confirmed the previously reported data but contradicted the change and magnitude of the reported values.

References

  • 1. Snyder RL and Leake PA. Topography of spiral ganglion projections to cochlear nucleus during postnatal development in cats. J Comparative Neurology. 1997; 384: 293-311.
  • 2. Biacabe B, Chevallier JM, Avan P, Bonfils P. Functional anatomy of auditory brain stem nuclei: application to the anatomical basis of brain stem auditory evoked potentials. Auris Nasus Larynx. 2001;28(1): 85-94.
  • 3. Osen KK. Cytoarchitecture of cochlear nuclei in cat, J Comparative Neurology. 1969;136(4): 453-484. 4. Idrizbegovic E, Bogdanovic N, Canlon B. Modulating calbindin and parvalbumin immunoreactivity in the cochlear nucleus by moderate noise exposure in mice. A quantitative study on the dorsal and posteroventral cochlear nucleus. Brain Research. 1998;800(1): 86-96.
  • 5. Gleich Y, Kadow C, Strutz J. The postnatal growth of cochlear nucleus subdivisions and neuronal somata of the anteroventral cochlear nucleus in the mongolian gerbil (Meriones ungiuculatus). Audiology & Neuro-Otology. 1998;3(1): 1-20.
  • 6. Moore JK, Guan YL, Shi SR. MAP2 expression in developing dendrites of human brain stem auditory neurons. J Chem Neuroanatomy. 1998;16(1): 1-15.
  • 7. Webster DB. Conductive hearing loss affects the growth of cochlear nuclei over an extended period of time. Hearing Research. 1988; 32: 185-192.
  • 8. Tierney TS, Moore DR. Naturally occuring neuron death during postnatal development of gerbil ventral cochlear nucleus begins at the onset of hearing. J Comparative Neurology. 1997;387: 421-429.
  • 9. Ağar E, Korkmaz A, Bosnak M, Demir Ş, Ayyıldız M, Marangoz C. Do cochlear nuclei contribute to auditory lateralization? A stereological evaluation of neuron numbers, Annals of Otology. Rhinology & Laryngology. 1999;108: 661-665.
  • 10. Korkmaz A, Çiftci N, Boşnak M, Ağar E. A simplified application of systematic area sampling and low-cost video recording set up for viewing disector pairs-exemplified in the rat cochlear nucleus. J Microsc. 2000;200(3): 269-276.
  • 11. Ayas B, Korkmaz A, Gürgör PN. Simultaneous Viewing of Disector Pairs with a Frame Grabber: A Practical and Economic Application of the Physical Disector on Systematically Sampled Section Fields. Cell & Tissue Biology Research, 9th National Histology and Embryology Congress with International Contribution; May 20-23; Adana-Turkey: 2008.
  • 12. Gundersen HJG. Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones, in memory of William R Thompson. Journal of Microscopy. 1986;143: 3-45.
  • 13. Pakkenberg B, Gundersen HJG. Total numbers of neurons and glial cells in human brain nuclei estimated by disector and fractionator. Journal of Microscopy. 1988;150: 1-20.
  • 14. Kaya M. Elektron mikroskopi teknikleri. Bulletion of the Çukurova Medical Faculty. 1984;9: 61-71. 15. Bancroft JD and Stevens A. theory and practice of histological techniques. Fourth Edition. Churchill Livingstone. 1996.
  • 16. Mlonyeni M. The late stages of the development of the primary cochlear nuclei in mice. Brain Research. 1967;4: 334-344.
  • 17. Tümkaya L. Sıçanlarda kohlear nuklesun postnatal gelişiminin stereolojik metotlarla araştırılması. Doktora tezi. OMU Sağlık Bilimleri Enstitüsü. 2003.
  • 18. Ayas B, Korkmaz A, Çiftçi N. İşitme öncesi ve sonrası dönemlerindeki sıçanlarda koklear nukleusun kantitatif özelliklerinin stereolojik metotlarla belirlenmesi. VI. Ulusal Histoloji-Embriyoloji Kongresi, Bildiri Özeti Kitapçığı, İ.Ü. Cerrahpaşa Tıp Fakültesi. İstanbul-Türkiye: 2002.
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Original Articles
Authors

Bülent Ayas This is me 0000-0003-4411-2496

Pınar Naile Gürgör This is me 0000-0002-4154-4675

Publication Date August 31, 2021
Published in Issue Year 2021 Volume: 8 Issue: 2

Cite

Vancouver Ayas B, Gürgör PN. Sıçan Koklear Nuklesunun Postnatal Gelişimi: Fiziksel Fraksiyonlama Yöntemi ile Nöron Sayımı. ODU Med J. 2021;8(2):7-11.