Review
PDF Zotero Mendeley EndNote BibTex Cite

Hydrogen Storage Methods

Year 2021, Volume 6, Issue 1, 1 - 10, 18.07.2021

Abstract

With the developing technology, the energy need of the world is increasing day by day. Oil and natural gas reserves, which are widely used today, are running out with each passing day. In the next 35 years, it is estimated that oil will not meet the world's energy needs. Various researches are carried out to meet the increasing energy and fuel needs. Among these researches, the fuel with the highest potential to meet the energy needs of the world in the future is hydrogen. Because in fuel cell cells operating with hydrogen, unlike internal combustion engines, no carbon, nitrogen or sulfur oxide is released to the nature. This situation highlights hydrogen as the fuel of the future.

References

  • [1] R. P. Oliveira, N. R. Singh, F. Ribeiro, W. N. Delgass, and R. Agrawal, “Sustainable fuel for the Brazilian transportation sector,” AIChE Annu. Meet. Conf. Proc., vol. 2007, 2008.
  • [2] R. A. Kerr, “Peak oil production may already be here,” Science (80-. )., vol. 331, no. 6024, pp. 1510–1511, 2011, doi: 10.1126/science.331.6024.1510.
  • [3] I. A. Mendelssohn et al., “Oil impacts on coastal wetlands: Implications for the Mississippi River delta ecosystem after the deepwater horizon oil spill,” Bioscience, vol. 62, no. 6, pp. 562–574, 2012, doi: 10.1525/bio.2012.62.6.7.
  • [4] D. E. Demirocak, “Hydrogen Storage Technologies,” Nanostructured Mater. Next-Generation Energy Storage Convers. Hydrog. Prod. Storage, Util., pp. 117–142, 2017, doi: 10.1007/978-3-662-53514-1.
  • [5] H. F. Abbas and W. M. A. Wan Daud, “Hydrogen production by methane decomposition: A review,” Int. J. Hydrogen Energy, vol. 35, no. 3, pp. 1160–1190, 2010, doi: 10.1016/j.ijhydene.2009.11.036.
  • [6] R. Gerboni and E. Salvador, “Hydrogen transportation systems: Elements of risk analysis,” Energy, vol. 34, no. 12, pp. 2223–2229, 2009, doi: 10.1016/j.energy.2008.12.018.
  • [7] “DOE Technical Targets for Onboard Hydrogen Storage for Light-Duty Vehicles.” [Online]. Available: https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles. [Accessed: 08-Nov-2020].
  • [8] P. Sabaz, “Hidrojen depolama için mandalina kabuğundan aktif karbon üretimi,” 2018.
  • [9] “Status of hydrogen storage technologies.” [Online]. Available: https://www.energy.gov/eere/fuelcells/status-hydrogen-storage-technologies. [Accessed: 08-Nov-2020].
  • [10] I. Ar, M. cengi. Taplamacıoğlu, and F. Ar, “Hidrojen Depolama Amaciyla Ki̇myasal Yöntemle Metal Hi̇drat Sentezi̇,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2013.
  • [11] B. P. Tarasov, M. V. Lototskii, and V. A. Yartys’, “Problem of hydrogen storage and prospective uses of hydrides for hydrogen accumulation,” Russ. J. Gen. Chem., vol. 77, no. 4, pp. 694–711, 2007, doi: 10.1134/S1070363207040329.
  • [12] C. W. Hamilton, R. T. Baker, A. Staubitz, and I. Manners, “B–N compounds for chemical hydrogen storage,” Chem. Soc. Rev., vol. 38, no. 1, pp. 279–293, 2009, doi: 10.1039/b800312m.
  • [13] L. Zhou, “Progress and problems in hydrogen storage methods,” Renew. Sustain. Energy Rev., vol. 9, no. 4, pp. 395–408, 2005, doi: 10.1016/j.rser.2004.05.005.
  • [14] S. M. Aceves et al., “High-density automotive hydrogen storage with cryogenic capable pressure vessels,” Int. J. Hydrogen Energy, vol. 35, no. 3, pp. 1219–1226, 2010, doi: 10.1016/j.ijhydene.2009.11.069.
  • [15] A. Şenyer, “Metal katkılı karbon nanotüplerde hidrojen adsorpsiyonu,” 2013.
  • [16] D. Chandra, J. J. Reilly, and R. Chellappa, “Metal Hydrides for Vehicular Applications: The State of the Art,” no. February, 2006.
  • [17] T. Noritake et al., “Chemical bonding of hydrogen in MgH2,” Appl. Phys. Lett., vol. 81, no. 11, pp. 2008–2010, 2002, doi: 10.1063/1.1506007.
  • [18] G. Principi, F. Agresti, A. Maddalena, and S. Lo Russo, “The problem of solid state hydrogen storage,” Energy, vol. 34, no. 12, pp. 2087–2091, 2009, doi: 10.1016/j.energy.2008.08.027.
  • [19] M. Güvendiren and T. Öztürk, “Enerji kaynağı olarak hidrojen ve hidrojen depolama.”
  • [20] A. Yılmaz and S. Şevik, “Sodyum Borhidrür ( NaBH 4 ) Destekli Bir Hidrojen / Hava PEM Yakıt Hücresi İle Elektrik Üretiminin Deneysel Analizi,” vol. 7, no. 2, pp. 216–227, 2017.
  • [21] U. B. Demirci, O. Akdim, J. Andrieux, J. Hannauer, R. Chamoun, and P. Miele, “Sodium Borohydride Hydrolysis as Hydrogen Generator : Issues , State of the Art and Applicability Upstream from a Fuel Cell,” no. 3, pp. 335–350, 2010, doi: 10.1002/fuce.200800171.
  • [22] J. Graetz, J. Reilly, G. Sandrock, J. Johnson, W. M. Zhou, and J. Wegrzyn, “Aluminum Hydride, A1H3, As a Hydrogen Storage Compound,” 2006.
  • [23] J. Graetz, “2009 Renewable Energy issue energy research New approaches to hydrogen storage,” no. 1, 2009, doi: 10.1039/b718842k.
  • [24] K. Güngörmez, “Amonyak Boran’ın dehidrojenlenmesi için oldukça aktif ve ekonıomik bir katalizör olarak indirgenmiş grafen oksit desteklenmiş Cu3Pd alaşım nanopartikülleri,” 2015.
  • [25] A. Staubitz, A. P. M. Robertson, and I. Manners, “Ammonia-Borane and related compounds as dihydrogen sources,” Chem. Rev., vol. 110, no. 7, pp. 4079–4124, 2010, doi: 10.1021/cr100088b.
  • [26] M. Niermann, A. Beckendorff, M. Kaltschmitt, and K. Bonhoff, “Liquid Organic Hydrogen Carrier (LOHC) – Assessment based on chemical and economic properties,” Int. J. Hydrogen Energy, vol. 44, no. 13, pp. 6631–6654, 2019, doi: 10.1016/j.ijhydene.2019.01.199.
  • [27] H. Frost, T. Düren, and R. Q. Snurr, “Effects of Surface Area, Free Volume, and Heat of Adsorption on Hydrogen Uptake in Metal−Organic Frameworks,” J. Phys. Chem. B, vol. 110, no. 19, pp. 9565–9570, 2006, doi: 10.1021/jp060433+.

Hidrojen Depolama Yöntemleri

Year 2021, Volume 6, Issue 1, 1 - 10, 18.07.2021

Abstract

Gelişen teknolojiyle birlikte dünyanın enerji ihtiyacı her geçen gün artmaktadır. Günümüzde yaygın olarak kullanılan petrol ve doğalgaz rezervleri her geçen gün tükenmektedir. Önümüzdeki 35 yıl içerisinde petrolün dünya enerji ihtiyacını karşılayamaz seviyeye gelmesi tahmin edilmektedir. Artan enerji ve yakıt ihtiyacının karşılanabilmesi için çeşitli araştırmalar yapılmaktadır. Bu araştırmalar arasında gelecekte dünyanın enerji ihtiyacını karşılayabilme konusunda potansiyeli en yüksek olan yakıt hidrojendir. Çünkü hidrojen ile çalışan yakıt pili hücrelerinde, içten yanmalı motorların aksine doğaya herhangi bir karbon, nitrojen veya sülfür oksit salınmamaktadır. Bu durum hidrojeni geleceğin yakıtı olarak öne çıkarmaktadır.

References

  • [1] R. P. Oliveira, N. R. Singh, F. Ribeiro, W. N. Delgass, and R. Agrawal, “Sustainable fuel for the Brazilian transportation sector,” AIChE Annu. Meet. Conf. Proc., vol. 2007, 2008.
  • [2] R. A. Kerr, “Peak oil production may already be here,” Science (80-. )., vol. 331, no. 6024, pp. 1510–1511, 2011, doi: 10.1126/science.331.6024.1510.
  • [3] I. A. Mendelssohn et al., “Oil impacts on coastal wetlands: Implications for the Mississippi River delta ecosystem after the deepwater horizon oil spill,” Bioscience, vol. 62, no. 6, pp. 562–574, 2012, doi: 10.1525/bio.2012.62.6.7.
  • [4] D. E. Demirocak, “Hydrogen Storage Technologies,” Nanostructured Mater. Next-Generation Energy Storage Convers. Hydrog. Prod. Storage, Util., pp. 117–142, 2017, doi: 10.1007/978-3-662-53514-1.
  • [5] H. F. Abbas and W. M. A. Wan Daud, “Hydrogen production by methane decomposition: A review,” Int. J. Hydrogen Energy, vol. 35, no. 3, pp. 1160–1190, 2010, doi: 10.1016/j.ijhydene.2009.11.036.
  • [6] R. Gerboni and E. Salvador, “Hydrogen transportation systems: Elements of risk analysis,” Energy, vol. 34, no. 12, pp. 2223–2229, 2009, doi: 10.1016/j.energy.2008.12.018.
  • [7] “DOE Technical Targets for Onboard Hydrogen Storage for Light-Duty Vehicles.” [Online]. Available: https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles. [Accessed: 08-Nov-2020].
  • [8] P. Sabaz, “Hidrojen depolama için mandalina kabuğundan aktif karbon üretimi,” 2018.
  • [9] “Status of hydrogen storage technologies.” [Online]. Available: https://www.energy.gov/eere/fuelcells/status-hydrogen-storage-technologies. [Accessed: 08-Nov-2020].
  • [10] I. Ar, M. cengi. Taplamacıoğlu, and F. Ar, “Hidrojen Depolama Amaciyla Ki̇myasal Yöntemle Metal Hi̇drat Sentezi̇,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2013.
  • [11] B. P. Tarasov, M. V. Lototskii, and V. A. Yartys’, “Problem of hydrogen storage and prospective uses of hydrides for hydrogen accumulation,” Russ. J. Gen. Chem., vol. 77, no. 4, pp. 694–711, 2007, doi: 10.1134/S1070363207040329.
  • [12] C. W. Hamilton, R. T. Baker, A. Staubitz, and I. Manners, “B–N compounds for chemical hydrogen storage,” Chem. Soc. Rev., vol. 38, no. 1, pp. 279–293, 2009, doi: 10.1039/b800312m.
  • [13] L. Zhou, “Progress and problems in hydrogen storage methods,” Renew. Sustain. Energy Rev., vol. 9, no. 4, pp. 395–408, 2005, doi: 10.1016/j.rser.2004.05.005.
  • [14] S. M. Aceves et al., “High-density automotive hydrogen storage with cryogenic capable pressure vessels,” Int. J. Hydrogen Energy, vol. 35, no. 3, pp. 1219–1226, 2010, doi: 10.1016/j.ijhydene.2009.11.069.
  • [15] A. Şenyer, “Metal katkılı karbon nanotüplerde hidrojen adsorpsiyonu,” 2013.
  • [16] D. Chandra, J. J. Reilly, and R. Chellappa, “Metal Hydrides for Vehicular Applications: The State of the Art,” no. February, 2006.
  • [17] T. Noritake et al., “Chemical bonding of hydrogen in MgH2,” Appl. Phys. Lett., vol. 81, no. 11, pp. 2008–2010, 2002, doi: 10.1063/1.1506007.
  • [18] G. Principi, F. Agresti, A. Maddalena, and S. Lo Russo, “The problem of solid state hydrogen storage,” Energy, vol. 34, no. 12, pp. 2087–2091, 2009, doi: 10.1016/j.energy.2008.08.027.
  • [19] M. Güvendiren and T. Öztürk, “Enerji kaynağı olarak hidrojen ve hidrojen depolama.”
  • [20] A. Yılmaz and S. Şevik, “Sodyum Borhidrür ( NaBH 4 ) Destekli Bir Hidrojen / Hava PEM Yakıt Hücresi İle Elektrik Üretiminin Deneysel Analizi,” vol. 7, no. 2, pp. 216–227, 2017.
  • [21] U. B. Demirci, O. Akdim, J. Andrieux, J. Hannauer, R. Chamoun, and P. Miele, “Sodium Borohydride Hydrolysis as Hydrogen Generator : Issues , State of the Art and Applicability Upstream from a Fuel Cell,” no. 3, pp. 335–350, 2010, doi: 10.1002/fuce.200800171.
  • [22] J. Graetz, J. Reilly, G. Sandrock, J. Johnson, W. M. Zhou, and J. Wegrzyn, “Aluminum Hydride, A1H3, As a Hydrogen Storage Compound,” 2006.
  • [23] J. Graetz, “2009 Renewable Energy issue energy research New approaches to hydrogen storage,” no. 1, 2009, doi: 10.1039/b718842k.
  • [24] K. Güngörmez, “Amonyak Boran’ın dehidrojenlenmesi için oldukça aktif ve ekonıomik bir katalizör olarak indirgenmiş grafen oksit desteklenmiş Cu3Pd alaşım nanopartikülleri,” 2015.
  • [25] A. Staubitz, A. P. M. Robertson, and I. Manners, “Ammonia-Borane and related compounds as dihydrogen sources,” Chem. Rev., vol. 110, no. 7, pp. 4079–4124, 2010, doi: 10.1021/cr100088b.
  • [26] M. Niermann, A. Beckendorff, M. Kaltschmitt, and K. Bonhoff, “Liquid Organic Hydrogen Carrier (LOHC) – Assessment based on chemical and economic properties,” Int. J. Hydrogen Energy, vol. 44, no. 13, pp. 6631–6654, 2019, doi: 10.1016/j.ijhydene.2019.01.199.
  • [27] H. Frost, T. Düren, and R. Q. Snurr, “Effects of Surface Area, Free Volume, and Heat of Adsorption on Hydrogen Uptake in Metal−Organic Frameworks,” J. Phys. Chem. B, vol. 110, no. 19, pp. 9565–9570, 2006, doi: 10.1021/jp060433+.

Details

Primary Language Turkish
Subjects Engineering, Chemical
Journal Section Reviews
Authors

Cihan KOŞAR (Primary Author)
SAKARYA UYGULAMALI BİLİMLER ÜNİVERSİTESİ, TEKNOLOJİ FAKÜLTESİ
0000-0002-5032-7365
Türkiye

Publication Date July 18, 2021
Published in Issue Year 2021, Volume 6, Issue 1

Cite

Bibtex @review { ojn938243, journal = {Open Journal of Nano}, issn = {}, eissn = {2147-0081}, address = {Sakarya Üniversitesi Fatih Mah. Eşit Sok. No:7/A -11 54580 - Arifiye / SAKARYA}, publisher = {Mustafa CAN}, year = {2021}, volume = {6}, pages = {1 - 10}, doi = {}, title = {Hidrojen Depolama Yöntemleri}, key = {cite}, author = {Koşar, Cihan} }
APA Koşar, C. (2021). Hidrojen Depolama Yöntemleri . Open Journal of Nano , 6 (1) , 1-10 . Retrieved from https://dergipark.org.tr/en/pub/ojn/issue/64190/938243
MLA Koşar, C. "Hidrojen Depolama Yöntemleri" . Open Journal of Nano 6 (2021 ): 1-10 <https://dergipark.org.tr/en/pub/ojn/issue/64190/938243>
Chicago Koşar, C. "Hidrojen Depolama Yöntemleri". Open Journal of Nano 6 (2021 ): 1-10
RIS TY - JOUR T1 - Hidrojen Depolama Yöntemleri AU - Cihan Koşar Y1 - 2021 PY - 2021 N1 - DO - T2 - Open Journal of Nano JF - Journal JO - JOR SP - 1 EP - 10 VL - 6 IS - 1 SN - -2147-0081 M3 - UR - Y2 - 2021 ER -
EndNote %0 Open Journal of Nano Hidrojen Depolama Yöntemleri %A Cihan Koşar %T Hidrojen Depolama Yöntemleri %D 2021 %J Open Journal of Nano %P -2147-0081 %V 6 %N 1 %R %U
ISNAD Koşar, Cihan . "Hidrojen Depolama Yöntemleri". Open Journal of Nano 6 / 1 (July 2021): 1-10 .
AMA Koşar C. Hidrojen Depolama Yöntemleri. ojn. 2021; 6(1): 1-10.
Vancouver Koşar C. Hidrojen Depolama Yöntemleri. Open Journal of Nano. 2021; 6(1): 1-10.
IEEE C. Koşar , "Hidrojen Depolama Yöntemleri", Open Journal of Nano, vol. 6, no. 1, pp. 1-10, Jul. 2021

ISSN:2147-0081