Research Article
BibTex RIS Cite

Sonochemical Removal of Highly Toxic Aqueous Cd2+ and Cr6+ Ions Using Dandelion-like Co3O4 Nanoflowers

Year 2023, Volume: 8 Issue: 1, 36 - 49, 30.06.2023
https://doi.org/10.56171/ojn.1192105
An Erratum to this article was published on June 29, 2024. https://dergipark.org.tr/en/pub/ojn/issue/82495/1413467

Abstract

In this work, cobalt(II/III) oxide (Co3O4) nano/microflowers were practically synthesized in laboratory conditions. Adsorbence properties of the nanoflowers were investigated for the removal of cadmium and chromium heavy metal ions. To assess the chemical and morphological characteristics of Co3O4 nanoflowers, Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), field emission electron microscopy (FESEM), Energy dispersive spectroscopy (EDS), and was used. To determine the adsorbence mechanism in detail, eluent concentration, eluent type, solution pH, adsorbent amount, solution volume, and adsorption duration were studied. In these assessments, flame atomic absorption spectroscopy (FAAS) was used. For Cr6+, adsorption optimum parameters were determined as 3M HNO3, pH 6.5, 150mg, 30mL, 60min. For Cd2+, optimum parameters were determined as 3M HNO3, pH 6.0, 100mg, 10mL, 30min. Co3O4, nanoflowers are eco-friendly adsorbent materials for the adsorption of Cd6+ and Cd2+ heavy metal ions since the production method is affordable and practical.

Supporting Institution

no funds

Project Number

-

Thanks

-

References

  • 1. Barrak, H., Kriaa, A., Triki, M., M’nif, A., Hamzaoui, A.H.: Study of the Adsorption and Desorption of Zn (II) and Pb (II) on CaF2 Nanoparticles. Iran J. Chem. Chem. Eng. 39, 191–201 (2020).
  • 2. Khan, I., Saeed, K., Khan, I.: Nanoparticles: Properties, applications and toxicities, (2019).
  • 3. Luan, L., Tang, B., Liu, Y., Wang, A., Zhang, B., Xu, W., Niu, Y.: Selective capture of Hg(II) and Ag(I) from water by sulfur-functionalized polyamidoamine dendrimer/magnetic Fe3O4 hybrid materials. Sep. Purif. Technol. 257, 117902 (2021). https://doi.org/10.1016/j.seppur.2020.117902.
  • 4. Mokarram, M., Saber, A., Obeidi, R.: Effects of heavy metal contamination released by petrochemical plants on marine life and water quality of coastal areas. Environ. Sci. Pollut. Res. 28, 51369–51383 (2021). https://doi.org/10.1007/S11356-021-13763-3/FIGURES/9.
  • 5. Kurnaz Yetim, N., Berberoğlu, E.A., Aslan, N., Koç, M.M., Özcan, C.: Sonochemical removal of Pb (II) ions from the water medium using Bi2S3 nanostructres. https://doi.org/10.1080/03067319.2022.2088288. (2022). https://doi.org/10.1080/03067319.2022.2088288.
  • 6. Üner, O., Körükçü, B.C., Özcan, C.: Adsorption application of activated carbon from ripe black locust seed pods for wastewater taken from Ergene River, Turkey. Int. J. Environ. Anal. Chem. 1–16 (2021). https://doi.org/10.1080/03067319.2021.1889533.
  • 7. Ozcan, C., Akozcan, S.: Determination of ni, pb and cd in drinking fountain water in kırklareli/turkey by faas after preconcentration on quercetin modified using granular activated carbon. Desalin. Water Treat. 175, 219–228 (2020). https://doi.org/10.5004/DWT.2020.24900.
  • 8. Klatt, V., Kunze, J., Timur, I., Filiz Senkal, B., Kaplan, O., Kaya, G., Ozcan, C., Karaaslan, N.M., Yaman, M., Jia, W.-P., Han, D.-M., Gao, T., Li, F., Keshav Krishna, A., Rama Mohan, K., Murthy, N., Sudarshan, V., Zhu, L., Chen, S., Lu, D., Cheng, X.: Synthesis of new polymeric resin and its application in solid phase extraction of copper in water samples using STAT-FAAS. Atom. Spectrosc. 30, 191–200 (2009).
  • 9. Hemmati, M., Rajabi, M., Asghari, A.: Magnetic nanoparticle based solid-phase extraction of heavy metal ions: A review on recent advances. Microchim. Acta 2018 1853. 185, 1–32 (2018). https://doi.org/10.1007/S00604-018-2670-4.
  • 10. Roduner, E.: Size matters: Why nanomaterials are different. Chem. Soc. Rev. 35, 583–592 (2006). https://doi.org/10.1039/b502142c.
  • 11. L. Johnston, R.: Atomic and Molecular Clusters. Taylor & Francis, London, New York (2002).
  • 12. Aslan, N., Ceylan, B., Koç, M.M., Findik, F.: Metallic nanoparticles as X-Ray computed tomography (CT) contrast agents: A review. J. Mol. Struct. 1219, 128599 (2020). https://doi.org/10.1016/j.molstruc.2020.128599.
  • 13. Singh, M., Manikandan, S., Kumaraguru, A.K.: Nanoparticles: A New Technology with Wide Applications. Res. J. Nanosci. Nanotechnol. 1, 1–11 (2011). https://doi.org/10.3923/rjnn.2011.1.11.
  • 14. Koç, M.M., Aslan, N., Kao, A.P., Barber, A.H.: Evaluation of X-ray tomography contrast agents: A review of production, protocols, and biological applications. Microsc. Res. Tech. 82, (2019). https://doi.org/10.1002/jemt.23225.
  • 15. Kurnaz Yetim, N., Kurşun Baysak, F., Koç, M.M., Nartop, D.: Characterization of magnetic Fe3O4@SiO2 nanoparticles with fluorescent properties for potential multipurpose imaging and theranostic applications. J. Mater. Sci. Mater. Electron. 31, 18278–18288 (2020). https://doi.org/10.1007/s10854-020-04375-7.
  • 16. Tao, Y., Zhang, C., Lü, T., Zhao, H.: Removal of Pb(II) Ions from Wastewater by Using Polyethyleneimine-Functionalized Fe3O4 Magnetic Nanoparticles. Appl. Sci. 2020, Vol. 10, Page 948. 10, 948 (2020). https://doi.org/10.3390/APP10030948.
  • 17. Sivalingam, D., Gopalakrishnan, J.B., Rayappan, J.B.B.: Nanostructured mixed ZnO and CdO thin film for selective ethanol sensing. Mater. Lett. 77, 117–120 (2012). https://doi.org/10.1016/J.MATLET.2012.03.009 18. Fareed, S., Medwal, R., Vas, J.V., Khan, I.A., Rawat, R.S., Rafiq, M.A.: Tailoring oxygen sensing characteristics of Co3O4 nanostructures through Gd doping. Ceram. Int. 46, 9498–9506 (2020). https://doi.org/10.1016/J.CERAMINT.2019.12.211.
  • 19. Karaçam, R., Yetim, N.K., Koç, M.M.: Structural and Magnetic Investigation of Bi2S3@Fe3O4 Nanocomposites for Medical Applications. J. Supercond. Nov. Magn. 33, 2715–2725 (2020).
  • 20. Kurnaz Yetim, N., Aslan, N., Sarıoğlu, A., Sarı, N., Koç, M.M., Yetim, N.K., Aslan, N., Sarıoğlu, A., Sarı, N., Koç, M.M.: Structural, electrochemical and optical properties of hydrothermally synthesized transition metal oxide (Co3O4, NiO, CuO) nanoflowers. J. Mater. Sci. Mater. Electron. 31, 12238–12248 (2020). https://doi.org/10.1007/s10854-020-03769-x.
  • 21. Liu, S., Zhang, R., Lv, W., Kong, F., Wang, W.: Controlled Synthesis of Co3O4 Electrocatalysts with Different Morphologies and Their Application for Oxygen Evolution Reaction. Int. J. Electrochem. Sci. 13, 3843–3854 (2018). https://doi.org/10.20964/2018.04.54.
  • 22. Ince, M., Kaplan, O., Yaman, M.: Solid-Phase Extraction and Preconcentration of Copper in Mineral Waters with 4-(2-Pyridyl-Azo) Resorcinol-Loaded Amberlite XAD-7 and Flame Atomic Absorption Spectrometry. Water Environ. Res. 80, 2104–2110 (2008). https://doi.org/10.2175/106143008X266805.
  • 23. Soylak, M.: Solid Phase Extraction of Cu(II), Pb(II), Fe(III), Co(II), and Cr(III) on Chelex‐100 Column Prior to Their Flame Atomic Absorption Spectrometric Determinations. http://dx.doi.org/10.1081/AL-120034064. 37, 1203–1217 (2011). https://doi.org/10.1081/AL-120034064.
  • 24. Tuzen, M., Soylak, M.: Multi-element coprecipitation for separation and enrichment of heavy metal ions for their flame atomic absorption spectrometric determinations. J. Hazard. Mater. 162, 724–729 (2009). https://doi.org/10.1016/J.JHAZMAT.2008.05.087.
  • 25. Soylak, M., Elçi, M.: Solid phase extraction of trace metal ions in drinking water samples from Kayseri-Turkey. J. TRACE MICROPROBE Tech. 18, 343–354 (2000). https://doi.org/10.2/JQUERY.MIN.JS.
  • 26. Ge, M.Y., Han, L.Y., Wiedwald, U., Xu, X.B., Wang, C., Kuepper, K., Ziemann, P., Jiang, J.Z.: Monodispersed NiO nanoflowers with anomalous magnetic behavior Related content Monodispersed NiO nanoflowers with anomalous magnetic behavior. Nanotechnology. 21, 5 (2010). https://doi.org/10.1088/0957-4484/21/42/425702.
  • 27. Bai, G., Dai, H., Deng, J., Liu, Y., Ji, K.: Porous NiO nanoflowers and nanourchins: Highly active catalysts for toluene combustion. Catal. Commun. 27, 148–153 (2012). https://doi.org/10.1016/j.catcom.2012.07.008.
  • 28. Salem, I.A., Salem, M.A., El-Ghobashy, M.A.: The dual role of ZnO nanoparticles for efficient capture of heavy metals and Acid blue 92 from water. J. Mol. Liq. 248, 527–538 (2017). https://doi.org/10.1016/J.MOLLIQ.2017.10.060.
  • 29. Kataria, N., Garg, V.K.: Optimization of Pb (II) and Cd (II) adsorption onto ZnO nanoflowers using central composite design: isotherms and kinetics modelling. J. Mol. Liq. 271, 228–239 (2018). https://doi.org/10.1016/J.MOLLIQ.2018.08.135.
  • 30. Xiong, C., Wang, W., Tan, F., Luo, F., Chen, J., Qiao, X.: Investigation on the efficiency and mechanism of Cd(II) and Pb(II) removal from aqueous solutions using MgO nanoparticles. J. Hazard. Mater. 299, 664–674 (2015). https://doi.org/10.1016/J.JHAZMAT.2015.08.008.
  • 31. Zhan, M., Gao, W., Nguyen, W., Yu, H., Amador, E., Chen, W.: The investigation of triadic silica-supported polyhexamethylene guanidine@nano-hydroxyapatite nanocomposites for Cr (VI) detection. Mater. Today Adv. 15, 100268 (2022). https://doi.org/10.1016/J.MTADV.2022.100268.
  • 32. Islam, A., Ahmad, H., Zaidi, N., Kumar, S.: A graphene oxide decorated with triethylenetetramine-modified magnetite for separation of chromium species prior to their sequential speciation and determination via FAAS. Microchim. Acta. 183, 289–296 (2016). https://doi.org/10.1007/S00604-015-1641-2/TABLES/3.

Yüksek Toksisiteye Sahip Cd2+ and Cr6+ İyonlarının Karahindiba Şeklindeki Co3O4 Nanoçiçek Yapılar Kullanılarak Sonokimyasal Yöntemle Sudan Ayrıştırılması

Year 2023, Volume: 8 Issue: 1, 36 - 49, 30.06.2023
https://doi.org/10.56171/ojn.1192105
An Erratum to this article was published on June 29, 2024. https://dergipark.org.tr/en/pub/ojn/issue/82495/1413467

Abstract

Bu çalışmada, hidrotermal yöntem ile kobalt(II/III) oksit (Co3O4) nançiçek yapılar laboratuvar şartlarında pratik bir şekilde sentezlendi. Krom ve kadmiyum gibi ağır metal iyonlarının uzaklaştırılması için bu nanoflowerların adsorban olarak uygulanması araştırıldı. Co3O4 nanoçiçeklerinin, morfolojik analizi ve kimyasal bileşimini karakterize etmek için X ışını kırınım analizi (XRD), alan emisyonlu taramalı elektron mikroskopisi (FESEM), enerji dağılım X-ışınları spektroskopisi (EDS) ve FTIR teknikleri kullanılarak gerçekleştirildi. Adsorpsiyon sisteminin optimum koşullarını belirlemek amacı ile elüent derişimi ve türü, çözeltinin pH’ı, adsorban miktarı, çözelti hacmi ve adsorpsiyon süresi gibi parametrelerin etkisi incelendi. Elde edilen çözeltide metal iyonlarının alevli atomik absorpsiyon spektrometrisi (FAAS) analiz sonuçları doğrultusunda optimumum parametreler belirlendi. Bu paremetre sonuçları sırasıyla Co3O4 nanoflowerı ile Cr6+ için 3 M HNO3, pH 6.5, 150 mg, 30 mL, 60 dk; Cd2+ için 3 M HNO3, pH 6, 100 mg, 10 mL, 30 dk olarak bulundu. Co3O4 nanoçiçekleri; adsorpsiyon kapasitelerinin yüksek olması, kolayca sentezlenebilir ve imalat maliyetlerinin nispeten düşük olmasından dolayı krom, kadmiyum ve diğer ağır metal iyonlarının sulu sistemlerden uzaklaştırılmasında verimli ve çevre dostu adsorbanlar olabileceklerini göstermektedirler.

Project Number

-

References

  • 1. Barrak, H., Kriaa, A., Triki, M., M’nif, A., Hamzaoui, A.H.: Study of the Adsorption and Desorption of Zn (II) and Pb (II) on CaF2 Nanoparticles. Iran J. Chem. Chem. Eng. 39, 191–201 (2020).
  • 2. Khan, I., Saeed, K., Khan, I.: Nanoparticles: Properties, applications and toxicities, (2019).
  • 3. Luan, L., Tang, B., Liu, Y., Wang, A., Zhang, B., Xu, W., Niu, Y.: Selective capture of Hg(II) and Ag(I) from water by sulfur-functionalized polyamidoamine dendrimer/magnetic Fe3O4 hybrid materials. Sep. Purif. Technol. 257, 117902 (2021). https://doi.org/10.1016/j.seppur.2020.117902.
  • 4. Mokarram, M., Saber, A., Obeidi, R.: Effects of heavy metal contamination released by petrochemical plants on marine life and water quality of coastal areas. Environ. Sci. Pollut. Res. 28, 51369–51383 (2021). https://doi.org/10.1007/S11356-021-13763-3/FIGURES/9.
  • 5. Kurnaz Yetim, N., Berberoğlu, E.A., Aslan, N., Koç, M.M., Özcan, C.: Sonochemical removal of Pb (II) ions from the water medium using Bi2S3 nanostructres. https://doi.org/10.1080/03067319.2022.2088288. (2022). https://doi.org/10.1080/03067319.2022.2088288.
  • 6. Üner, O., Körükçü, B.C., Özcan, C.: Adsorption application of activated carbon from ripe black locust seed pods for wastewater taken from Ergene River, Turkey. Int. J. Environ. Anal. Chem. 1–16 (2021). https://doi.org/10.1080/03067319.2021.1889533.
  • 7. Ozcan, C., Akozcan, S.: Determination of ni, pb and cd in drinking fountain water in kırklareli/turkey by faas after preconcentration on quercetin modified using granular activated carbon. Desalin. Water Treat. 175, 219–228 (2020). https://doi.org/10.5004/DWT.2020.24900.
  • 8. Klatt, V., Kunze, J., Timur, I., Filiz Senkal, B., Kaplan, O., Kaya, G., Ozcan, C., Karaaslan, N.M., Yaman, M., Jia, W.-P., Han, D.-M., Gao, T., Li, F., Keshav Krishna, A., Rama Mohan, K., Murthy, N., Sudarshan, V., Zhu, L., Chen, S., Lu, D., Cheng, X.: Synthesis of new polymeric resin and its application in solid phase extraction of copper in water samples using STAT-FAAS. Atom. Spectrosc. 30, 191–200 (2009).
  • 9. Hemmati, M., Rajabi, M., Asghari, A.: Magnetic nanoparticle based solid-phase extraction of heavy metal ions: A review on recent advances. Microchim. Acta 2018 1853. 185, 1–32 (2018). https://doi.org/10.1007/S00604-018-2670-4.
  • 10. Roduner, E.: Size matters: Why nanomaterials are different. Chem. Soc. Rev. 35, 583–592 (2006). https://doi.org/10.1039/b502142c.
  • 11. L. Johnston, R.: Atomic and Molecular Clusters. Taylor & Francis, London, New York (2002).
  • 12. Aslan, N., Ceylan, B., Koç, M.M., Findik, F.: Metallic nanoparticles as X-Ray computed tomography (CT) contrast agents: A review. J. Mol. Struct. 1219, 128599 (2020). https://doi.org/10.1016/j.molstruc.2020.128599.
  • 13. Singh, M., Manikandan, S., Kumaraguru, A.K.: Nanoparticles: A New Technology with Wide Applications. Res. J. Nanosci. Nanotechnol. 1, 1–11 (2011). https://doi.org/10.3923/rjnn.2011.1.11.
  • 14. Koç, M.M., Aslan, N., Kao, A.P., Barber, A.H.: Evaluation of X-ray tomography contrast agents: A review of production, protocols, and biological applications. Microsc. Res. Tech. 82, (2019). https://doi.org/10.1002/jemt.23225.
  • 15. Kurnaz Yetim, N., Kurşun Baysak, F., Koç, M.M., Nartop, D.: Characterization of magnetic Fe3O4@SiO2 nanoparticles with fluorescent properties for potential multipurpose imaging and theranostic applications. J. Mater. Sci. Mater. Electron. 31, 18278–18288 (2020). https://doi.org/10.1007/s10854-020-04375-7.
  • 16. Tao, Y., Zhang, C., Lü, T., Zhao, H.: Removal of Pb(II) Ions from Wastewater by Using Polyethyleneimine-Functionalized Fe3O4 Magnetic Nanoparticles. Appl. Sci. 2020, Vol. 10, Page 948. 10, 948 (2020). https://doi.org/10.3390/APP10030948.
  • 17. Sivalingam, D., Gopalakrishnan, J.B., Rayappan, J.B.B.: Nanostructured mixed ZnO and CdO thin film for selective ethanol sensing. Mater. Lett. 77, 117–120 (2012). https://doi.org/10.1016/J.MATLET.2012.03.009 18. Fareed, S., Medwal, R., Vas, J.V., Khan, I.A., Rawat, R.S., Rafiq, M.A.: Tailoring oxygen sensing characteristics of Co3O4 nanostructures through Gd doping. Ceram. Int. 46, 9498–9506 (2020). https://doi.org/10.1016/J.CERAMINT.2019.12.211.
  • 19. Karaçam, R., Yetim, N.K., Koç, M.M.: Structural and Magnetic Investigation of Bi2S3@Fe3O4 Nanocomposites for Medical Applications. J. Supercond. Nov. Magn. 33, 2715–2725 (2020).
  • 20. Kurnaz Yetim, N., Aslan, N., Sarıoğlu, A., Sarı, N., Koç, M.M., Yetim, N.K., Aslan, N., Sarıoğlu, A., Sarı, N., Koç, M.M.: Structural, electrochemical and optical properties of hydrothermally synthesized transition metal oxide (Co3O4, NiO, CuO) nanoflowers. J. Mater. Sci. Mater. Electron. 31, 12238–12248 (2020). https://doi.org/10.1007/s10854-020-03769-x.
  • 21. Liu, S., Zhang, R., Lv, W., Kong, F., Wang, W.: Controlled Synthesis of Co3O4 Electrocatalysts with Different Morphologies and Their Application for Oxygen Evolution Reaction. Int. J. Electrochem. Sci. 13, 3843–3854 (2018). https://doi.org/10.20964/2018.04.54.
  • 22. Ince, M., Kaplan, O., Yaman, M.: Solid-Phase Extraction and Preconcentration of Copper in Mineral Waters with 4-(2-Pyridyl-Azo) Resorcinol-Loaded Amberlite XAD-7 and Flame Atomic Absorption Spectrometry. Water Environ. Res. 80, 2104–2110 (2008). https://doi.org/10.2175/106143008X266805.
  • 23. Soylak, M.: Solid Phase Extraction of Cu(II), Pb(II), Fe(III), Co(II), and Cr(III) on Chelex‐100 Column Prior to Their Flame Atomic Absorption Spectrometric Determinations. http://dx.doi.org/10.1081/AL-120034064. 37, 1203–1217 (2011). https://doi.org/10.1081/AL-120034064.
  • 24. Tuzen, M., Soylak, M.: Multi-element coprecipitation for separation and enrichment of heavy metal ions for their flame atomic absorption spectrometric determinations. J. Hazard. Mater. 162, 724–729 (2009). https://doi.org/10.1016/J.JHAZMAT.2008.05.087.
  • 25. Soylak, M., Elçi, M.: Solid phase extraction of trace metal ions in drinking water samples from Kayseri-Turkey. J. TRACE MICROPROBE Tech. 18, 343–354 (2000). https://doi.org/10.2/JQUERY.MIN.JS.
  • 26. Ge, M.Y., Han, L.Y., Wiedwald, U., Xu, X.B., Wang, C., Kuepper, K., Ziemann, P., Jiang, J.Z.: Monodispersed NiO nanoflowers with anomalous magnetic behavior Related content Monodispersed NiO nanoflowers with anomalous magnetic behavior. Nanotechnology. 21, 5 (2010). https://doi.org/10.1088/0957-4484/21/42/425702.
  • 27. Bai, G., Dai, H., Deng, J., Liu, Y., Ji, K.: Porous NiO nanoflowers and nanourchins: Highly active catalysts for toluene combustion. Catal. Commun. 27, 148–153 (2012). https://doi.org/10.1016/j.catcom.2012.07.008.
  • 28. Salem, I.A., Salem, M.A., El-Ghobashy, M.A.: The dual role of ZnO nanoparticles for efficient capture of heavy metals and Acid blue 92 from water. J. Mol. Liq. 248, 527–538 (2017). https://doi.org/10.1016/J.MOLLIQ.2017.10.060.
  • 29. Kataria, N., Garg, V.K.: Optimization of Pb (II) and Cd (II) adsorption onto ZnO nanoflowers using central composite design: isotherms and kinetics modelling. J. Mol. Liq. 271, 228–239 (2018). https://doi.org/10.1016/J.MOLLIQ.2018.08.135.
  • 30. Xiong, C., Wang, W., Tan, F., Luo, F., Chen, J., Qiao, X.: Investigation on the efficiency and mechanism of Cd(II) and Pb(II) removal from aqueous solutions using MgO nanoparticles. J. Hazard. Mater. 299, 664–674 (2015). https://doi.org/10.1016/J.JHAZMAT.2015.08.008.
  • 31. Zhan, M., Gao, W., Nguyen, W., Yu, H., Amador, E., Chen, W.: The investigation of triadic silica-supported polyhexamethylene guanidine@nano-hydroxyapatite nanocomposites for Cr (VI) detection. Mater. Today Adv. 15, 100268 (2022). https://doi.org/10.1016/J.MTADV.2022.100268.
  • 32. Islam, A., Ahmad, H., Zaidi, N., Kumar, S.: A graphene oxide decorated with triethylenetetramine-modified magnetite for separation of chromium species prior to their sequential speciation and determination via FAAS. Microchim. Acta. 183, 289–296 (2016). https://doi.org/10.1007/S00604-015-1641-2/TABLES/3.
There are 31 citations in total.

Details

Primary Language English
Subjects Environmental Sciences
Journal Section Research Article
Authors

Elif Aybike Berberoğlu 0000-0003-0863-5927

Mümin Mehmet Koç 0000-0003-4500-0373

Nurdan Kurnaz Yetim 0000-0001-6227-0346

Cemile Özcan 0000-0002-2954-0612

Project Number -
Early Pub Date August 8, 2022
Publication Date June 30, 2023
Submission Date October 20, 2022
Published in Issue Year 2023 Volume: 8 Issue: 1

Cite

APA Berberoğlu, E. A., Koç, M. M., Kurnaz Yetim, N., Özcan, C. (2023). Sonochemical Removal of Highly Toxic Aqueous Cd2+ and Cr6+ Ions Using Dandelion-like Co3O4 Nanoflowers. Open Journal of Nano, 8(1), 36-49. https://doi.org/10.56171/ojn.1192105
AMA Berberoğlu EA, Koç MM, Kurnaz Yetim N, Özcan C. Sonochemical Removal of Highly Toxic Aqueous Cd2+ and Cr6+ Ions Using Dandelion-like Co3O4 Nanoflowers. Open J. Nano. June 2023;8(1):36-49. doi:10.56171/ojn.1192105
Chicago Berberoğlu, Elif Aybike, Mümin Mehmet Koç, Nurdan Kurnaz Yetim, and Cemile Özcan. “Sonochemical Removal of Highly Toxic Aqueous Cd2+ and Cr6+ Ions Using Dandelion-Like Co3O4 Nanoflowers”. Open Journal of Nano 8, no. 1 (June 2023): 36-49. https://doi.org/10.56171/ojn.1192105.
EndNote Berberoğlu EA, Koç MM, Kurnaz Yetim N, Özcan C (June 1, 2023) Sonochemical Removal of Highly Toxic Aqueous Cd2+ and Cr6+ Ions Using Dandelion-like Co3O4 Nanoflowers. Open Journal of Nano 8 1 36–49.
IEEE E. A. Berberoğlu, M. M. Koç, N. Kurnaz Yetim, and C. Özcan, “Sonochemical Removal of Highly Toxic Aqueous Cd2+ and Cr6+ Ions Using Dandelion-like Co3O4 Nanoflowers”, Open J. Nano, vol. 8, no. 1, pp. 36–49, 2023, doi: 10.56171/ojn.1192105.
ISNAD Berberoğlu, Elif Aybike et al. “Sonochemical Removal of Highly Toxic Aqueous Cd2+ and Cr6+ Ions Using Dandelion-Like Co3O4 Nanoflowers”. Open Journal of Nano 8/1 (June 2023), 36-49. https://doi.org/10.56171/ojn.1192105.
JAMA Berberoğlu EA, Koç MM, Kurnaz Yetim N, Özcan C. Sonochemical Removal of Highly Toxic Aqueous Cd2+ and Cr6+ Ions Using Dandelion-like Co3O4 Nanoflowers. Open J. Nano. 2023;8:36–49.
MLA Berberoğlu, Elif Aybike et al. “Sonochemical Removal of Highly Toxic Aqueous Cd2+ and Cr6+ Ions Using Dandelion-Like Co3O4 Nanoflowers”. Open Journal of Nano, vol. 8, no. 1, 2023, pp. 36-49, doi:10.56171/ojn.1192105.
Vancouver Berberoğlu EA, Koç MM, Kurnaz Yetim N, Özcan C. Sonochemical Removal of Highly Toxic Aqueous Cd2+ and Cr6+ Ions Using Dandelion-like Co3O4 Nanoflowers. Open J. Nano. 2023;8(1):36-49.

23830

The Open Journal of Nano(OJN) deals with information related to (but not limited to) physical, chemical and biological phenomena and processes ranging from molecular to microscale structures.

All publications in The Open Journal of Nano are licensed under the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.