Research Article
BibTex RIS Cite

Investigation of the Effect of Huntit Filler on Flame Retardancy and Mechanical Properties of Silicone Rubber-based Materials in Cable Applications

Year 2023, Volume: 8 Issue: 2, 107 - 116, 21.12.2023
https://doi.org/10.56171/ojn.1400079

Abstract

Silicone rubber is an organic/inorganic hybrid macromolecular polymer with properties such as fire resistance, strength, flexibility, chemical resistance, thermal stability, hydrophobicity, dielectric characteristics, resistance to environmental conditions, and biocompatibility. It is an elastomer and exhibits high-performance characteristics compared to most materials in its class. Its current properties and the relative ease of enhancing its characteristics have significantly increased the industrial utilization of silicone rubber. Due to its mineral structure, silicone rubber is frequently used as an insulating material to ensure circuit integrity in the production of fire-resistant cables. It exhibits low smoke zero halogen (LSZH) characteristics, with low level release of toxic gases as a result of combustion reactions. In this study, silicone rubber compounds including a natural mineral Huntite with improved fire-resistant properties compared to standard silicone materials suitable for cable production were prepared. After cable production the fire performance properties alongside the physico-mechanical characteristics of the final products were examined. To determine the flame retardancy of the material, limiting oxygen index (LOI%) and fire performance tests were performed according to the ISO 4589-2 and BS 6387 standards, respectively. The results show that Huntite is a suitable alternative material to improve silicone materials' flame resistance.

Supporting Institution

2M Kablo San. Tic. A.Ş.

Project Number

AGM22C010523

References

  • [1] Mansouri J, Wood CA, Roberts K, Cheng YB, Burford RP. Investigation of the ceramifying process of modified silicone-silicate compositions. J Mater Sci. 2007;42(15):6046-6055.
  • [2] Radhakrishnan TS. New method for evaluation of kinetic parameters and mechanism of degradation from pyrolysis-GC studies: thermal degradation of polydimethylsiloxanes. J Appl Polym Sci. 1999;73(3): 441-450.
  • [3] Hamdani S, Longuet C, Perrin D, Lopez-cuesta JM, Ganachaud F. Flame retardancy of silicone-based materials. Polym Degrad Stab. 2009;94(4):465-495.
  • [4] Buch R. Rates of heat release and related fire parameters for silicones. Fire Saf J. 1991;17(1):1-12.
  • [5] Belot V, Corriu RJP, Leclercq D, et al. Thermal redistribution reactions in crosslinked polysiloxanes. J Polym Sci Part A Polym Chem. 2010;30 (4):613-623.
  • [6] Hshieh FY, Buch RR. Controlled-atmosphere cone calorimeter studies of silicones. Fire Mater. 1997;21(6):265-270.
  • [8] Yue, Y., Zhang, H., Zhang, Z., & Chen, Y. (2013). Polymer–filler interaction of fumed silica filled polydimethylsiloxane investigated by bound rubber. Composites Science and Technology, 86, 1–8. https://doi.org/10.1016/j.compscitech.2013.06.019.
  • [9] Li, Z., Liang, W., Shan, Y., Wang, X., Yang, K., & Cui, Y. (2019). Study of flame‐retarded silicone rubber with ceramifiable property. Fire and Materials, 44(4), 487–496. https://doi.org/10.1002/fam.2802.
  • [7] Mei N. Advance in the research and application of flame-retardant and fireproof silicone rubber. New Chem Mater. 2008;36(2):8-9.
  • [10] Savas, L. A., Deniz, T. K., Tayfun, U., & Dogan, M. (2017). Effect of microcapsulated red phosphorus on flame retardant, thermal and mechanical properties of thermoplastic polyurethane composites filled with huntite&hydromagnesite mineral. Polymer Degradation and Stability, 135, 121–129. https://doi.org/10.1016/j.polymdegradstab.2016.12.001 .
  • [11] Basfar, A. A., & Bae, H. J. (2009). Influence of Magnesium Hydroxide and Huntite Hydromagnesite on Mechanical Properties of Ethylene Vinyl Acetate Compounds Cross-linked by DiCumyl Peroxide and Ionizing Radiation. Journal of Fire Sciences, 28(2), 161–180. https://doi.org/10.1177/0734904109340765 .
  • [12] Cusack, P. A., & Hornsby, P. R. (1999). Zinc stannate–coated fillers: Novel flame retardants and smoke suppressants for polymeric materials. Journal of Vinyl and Additive Technology, 5(1), 21-30.
  • [13] Wilkie, C. A., & Grand, A. F. (2000). Fire Retardancy of Polymeric Materials. Taylor & Francis Group, (Wilkie & Grand, 2000, p. 285-343).
  • [14] Dogan, M., Dogan, S. D., Savas, L. A., Ozcelik, G., & Tayfun, U. (2021). Flame retardant effect of boron compounds in polymeric materials. Composites Part B: Engineering, 222, 109088. https://doi.org/10.1016/j.compositesb.2021.109088.
  • [15] Yücel Bayram, M., Gül Özgen, (2017) Dünyada ve Türkiye’de Huntit Maden Tetkik ve Arama Müdürlüğü; Maden Serisi 4. https://www.mta.gov.tr/v3.0/sayfalar/bilgi-merkezi/maden-serisi/Huntit.pdf Last visited: 04.12.2023.
  • [16] Akao, M., & Iwai, S. (1977). The hydrogen bonding of hydromagnesite. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 33(4), 1273–1275. https://doi.org/10.1107/s0567740877005834.
  • [17] Akao, M., Marumo, F., & Iwai, S. (1974). The crystal structure of hydromagnesite. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 30(11), 2670–2672. https://doi.org/10.1107/s0567740874007771.
  • [18] Faust, G. T. (1953). Huntite, Mg3Ca (CO3) 4 A new mineral. American Mineralogist: Journal of Earth and Planetary Materials, 38(1-2), 4-24.
  • [19] Graf, D. L., & Bradley, W. F. (1962). The crystal structure of huntite, Mg3Ca(CO3)4. Acta Crystallographica, 15(3), 238–242. https://doi.org/10.1107/s0365110x62000584.
  • [20] Murdoch, J. (1954). Unit cell of hydromagnesite. American Mineralogist: Journal of Earth and Planetary Materials, 39(1-2), 24-29.
  • [21] Rogers, A. F. (1923). The crystallography of hydromagnesite. American Journal of Science, s5-6(31), 37–47. https://doi.org/10.2475/ajs.s5-6.31.37.
  • [22] Beck, C. W. (1950). Differential thermal analysis curves of carbonate minerals. American Mineralogist: Journal of Earth and Planetary Materials, 35(11-12), 985-1013.
  • [23] Botha, A., & Strydom, C. (2003). DTA and FT-IR analysis of the rehydration of basic magnesium carbonate. Journal of Thermal Analysis and Calorimetry, 71(3), 987-996.
  • [24] Botha, A., & Strydom, C. A. (2001). Preparation of a magnesium hydroxy carbonate from magnesium hydroxide. Hydrometallurgy, 62(3), 175-183.
  • [25] Choudhary, V. R., Pataskar, S. G., Gunjikar, V. G., & Zope, G. B. (1994). Influence of preparation conditions of basic magnesium carbonate on its thermal analysis. Thermochimica acta, 232(1), 95-110. [26] Vágvölgyi, V., Frost, R. L., Hales, M., Locke, A., Kristóf, J., & Horváth, E. (2008). Controlled rate thermal analysis of hydromagnesite. Journal of Thermal Analysis and Calorimetry, 92, 893-897.
  • [27] Haurie, L., Fernandez, A. I., Velasco, J. I., Chimenos, J. M., Lopez-Cuesta, J. M., & Espiell, F. (2007). Effects of milling on the thermal stability of synthetic hydromagnesite. Materials Research Bulletin, 42(6), 1010-1018.
  • [28] Inglethorpe, S. D. J., & Stamatakis, M. G. (2003). Thermal decomposition of natural mixtures of hydromagnesite and huntite from Kozani, Northern Greece. Mineral Wealth, 126, 7-18.
  • [29] Khan, N., Dollimore, D., Alexander, K., & Wilburn, F. W. (2001). The origin of the exothermic peak in the thermal decomposition of basic magnesium carbonate. Thermochimica Acta, 367, 321-333.
  • [30] Ozao, R., & Otsuka, R. (1985). Thermoanalytical investigation of huntite. Thermochimica acta, 86, 45-58. [31] Padeste, C., Oswald, H. R., & Reller, A. (1991). The thermal behaviour of pure and nickel-doped hydromagnesite in different atmospheres. Materials research bulletin, 26(12), 1263-1268.
  • [32] Rajeswara R, Chohan VS. Kinetics of thermal decomposition of hydromagnesite. Chem Eng Technol 1995;18:359e63.
  • [33] Sawada, Y., Uematsu, K., Mizutani, N., & Kato, M. (1978). Thermal decomposition of hydromagnesite 4MgCO3· Mg (OH) 2· 4H2O. Journal of Inorganic and Nuclear Chemistry, 40(6), 979-982.
  • [34] Sawada, Y., Uematsu, K., Mizutani, N., & Kato, M. (1978). Thermal decomposition of hydromagnesite 4MgCO3-Mg (OH) 2-4H2O under different partial pressures of carbon dioxide. Thermochimica acta, 27(1-3), 45-59.
  • [35] Sawada, Y., Yamaguchi, J., Sakurai, O., Uematsu, K., Mizutani, N., & Kato, M. (1979). Thermal decomposition of basic magnesium carbonates under high-pressure gas atmoshpheres. Thermochimica acta, 32(1-2), 277-291.
  • [36] Sawada, Y., Yamaguchi, J., Sakurai, O., Uematsu, K., Mizutani, N., & Kato, M. (1979). Thermogravimetric study on the decomposition of hydromagnesite 4 MgCO3· Mg (OH) 2· 4 H2O. Thermochimica acta, 33, 127-140.
  • [37] Sawada, Y., Yamaguchi, J., Sakurai, O., Uematsu, K., Mizutani, N., & Kato, M. (1979). Isothermal differential scanning calorimetry on an exothermic phenomenon during thermal decomposition of hydromagnesite 4 MgCO3· Mg (OH) 2· 4 H2O. Thermochimica Acta, 34(2), 233-237.

Huntit Dolgusunun Silikon Kauçuk Üzerinde Alev Geciktirici ve Mekanik Özelliklerine Etkisinin Kablo Uygulamalarında İncelenmesi

Year 2023, Volume: 8 Issue: 2, 107 - 116, 21.12.2023
https://doi.org/10.56171/ojn.1400079

Abstract

Silikon kauçuk, yangına dayanıklılık, mekanik dayanıklılık, esneklik, kimyasal direnç, termal stabilite, hidrofobiklik, dielektrik karakteristikleri, çevresel koşullara karşı direnç ve biyolojik uyumluluk gibi özelliklere sahip organik/inorganik hibrid bir makromoleküler polimerdir. Elastomer sınıfındaki çoğu malzeme ile karşılaştırıldığında yüksek performans özellikleri sergiler. Sahip olduğu bu özellikler ve bu özelliklerin geliştirilmesinin göreceli kolay olması, silikon kauçuğun sanayide kullanımını önemli ölçüde artırmaktadır. Mineral yapısı nedeniyle silikon kauçuk yangına dayanıklı kabloların üretiminde devre bütünlüğünü sağlamak için bir yalıtkan malzeme olarak sıkça kullanılmaktadır. Yanma reaksiyonları sonucunda toksik gazların düşük seviyede salınımı ile düşük duman ve sıfır halojen (LSZH) özelliklerine sahiptir. Bu çalışmada, kablo üretimine uygun standart silikon malzemelere göre yangına dayanıklılık özellikleri geliştirilmiş, doğal bir mineral olan Huntit içeren silikon kauçuk bileşikleri hazırlanmıştır. Kablo üretiminden sonra nihai ürünün fiziko-mekanik özelliklerinin yanı sıra yangın performans özellikleri de incelenmiştir. Kabloların alev geciktirici özelliklerini belirlemek için ISO 4589-2 ve BS 6387 standartlarına göre sırasıyla sınırlı oksijen indeksi (LOI%) ve yangın performans testleri gerçekleştirilmiştir. Sonuçlar Huntitin silikon malzemelerin alev direncini arttırmak için uygun bir alternatif malzeme olduğunu göstermektedir.

Supporting Institution

2M Kablo San. Tic. A.Ş.

Project Number

AGM22C010523

References

  • [1] Mansouri J, Wood CA, Roberts K, Cheng YB, Burford RP. Investigation of the ceramifying process of modified silicone-silicate compositions. J Mater Sci. 2007;42(15):6046-6055.
  • [2] Radhakrishnan TS. New method for evaluation of kinetic parameters and mechanism of degradation from pyrolysis-GC studies: thermal degradation of polydimethylsiloxanes. J Appl Polym Sci. 1999;73(3): 441-450.
  • [3] Hamdani S, Longuet C, Perrin D, Lopez-cuesta JM, Ganachaud F. Flame retardancy of silicone-based materials. Polym Degrad Stab. 2009;94(4):465-495.
  • [4] Buch R. Rates of heat release and related fire parameters for silicones. Fire Saf J. 1991;17(1):1-12.
  • [5] Belot V, Corriu RJP, Leclercq D, et al. Thermal redistribution reactions in crosslinked polysiloxanes. J Polym Sci Part A Polym Chem. 2010;30 (4):613-623.
  • [6] Hshieh FY, Buch RR. Controlled-atmosphere cone calorimeter studies of silicones. Fire Mater. 1997;21(6):265-270.
  • [8] Yue, Y., Zhang, H., Zhang, Z., & Chen, Y. (2013). Polymer–filler interaction of fumed silica filled polydimethylsiloxane investigated by bound rubber. Composites Science and Technology, 86, 1–8. https://doi.org/10.1016/j.compscitech.2013.06.019.
  • [9] Li, Z., Liang, W., Shan, Y., Wang, X., Yang, K., & Cui, Y. (2019). Study of flame‐retarded silicone rubber with ceramifiable property. Fire and Materials, 44(4), 487–496. https://doi.org/10.1002/fam.2802.
  • [7] Mei N. Advance in the research and application of flame-retardant and fireproof silicone rubber. New Chem Mater. 2008;36(2):8-9.
  • [10] Savas, L. A., Deniz, T. K., Tayfun, U., & Dogan, M. (2017). Effect of microcapsulated red phosphorus on flame retardant, thermal and mechanical properties of thermoplastic polyurethane composites filled with huntite&hydromagnesite mineral. Polymer Degradation and Stability, 135, 121–129. https://doi.org/10.1016/j.polymdegradstab.2016.12.001 .
  • [11] Basfar, A. A., & Bae, H. J. (2009). Influence of Magnesium Hydroxide and Huntite Hydromagnesite on Mechanical Properties of Ethylene Vinyl Acetate Compounds Cross-linked by DiCumyl Peroxide and Ionizing Radiation. Journal of Fire Sciences, 28(2), 161–180. https://doi.org/10.1177/0734904109340765 .
  • [12] Cusack, P. A., & Hornsby, P. R. (1999). Zinc stannate–coated fillers: Novel flame retardants and smoke suppressants for polymeric materials. Journal of Vinyl and Additive Technology, 5(1), 21-30.
  • [13] Wilkie, C. A., & Grand, A. F. (2000). Fire Retardancy of Polymeric Materials. Taylor & Francis Group, (Wilkie & Grand, 2000, p. 285-343).
  • [14] Dogan, M., Dogan, S. D., Savas, L. A., Ozcelik, G., & Tayfun, U. (2021). Flame retardant effect of boron compounds in polymeric materials. Composites Part B: Engineering, 222, 109088. https://doi.org/10.1016/j.compositesb.2021.109088.
  • [15] Yücel Bayram, M., Gül Özgen, (2017) Dünyada ve Türkiye’de Huntit Maden Tetkik ve Arama Müdürlüğü; Maden Serisi 4. https://www.mta.gov.tr/v3.0/sayfalar/bilgi-merkezi/maden-serisi/Huntit.pdf Last visited: 04.12.2023.
  • [16] Akao, M., & Iwai, S. (1977). The hydrogen bonding of hydromagnesite. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 33(4), 1273–1275. https://doi.org/10.1107/s0567740877005834.
  • [17] Akao, M., Marumo, F., & Iwai, S. (1974). The crystal structure of hydromagnesite. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 30(11), 2670–2672. https://doi.org/10.1107/s0567740874007771.
  • [18] Faust, G. T. (1953). Huntite, Mg3Ca (CO3) 4 A new mineral. American Mineralogist: Journal of Earth and Planetary Materials, 38(1-2), 4-24.
  • [19] Graf, D. L., & Bradley, W. F. (1962). The crystal structure of huntite, Mg3Ca(CO3)4. Acta Crystallographica, 15(3), 238–242. https://doi.org/10.1107/s0365110x62000584.
  • [20] Murdoch, J. (1954). Unit cell of hydromagnesite. American Mineralogist: Journal of Earth and Planetary Materials, 39(1-2), 24-29.
  • [21] Rogers, A. F. (1923). The crystallography of hydromagnesite. American Journal of Science, s5-6(31), 37–47. https://doi.org/10.2475/ajs.s5-6.31.37.
  • [22] Beck, C. W. (1950). Differential thermal analysis curves of carbonate minerals. American Mineralogist: Journal of Earth and Planetary Materials, 35(11-12), 985-1013.
  • [23] Botha, A., & Strydom, C. (2003). DTA and FT-IR analysis of the rehydration of basic magnesium carbonate. Journal of Thermal Analysis and Calorimetry, 71(3), 987-996.
  • [24] Botha, A., & Strydom, C. A. (2001). Preparation of a magnesium hydroxy carbonate from magnesium hydroxide. Hydrometallurgy, 62(3), 175-183.
  • [25] Choudhary, V. R., Pataskar, S. G., Gunjikar, V. G., & Zope, G. B. (1994). Influence of preparation conditions of basic magnesium carbonate on its thermal analysis. Thermochimica acta, 232(1), 95-110. [26] Vágvölgyi, V., Frost, R. L., Hales, M., Locke, A., Kristóf, J., & Horváth, E. (2008). Controlled rate thermal analysis of hydromagnesite. Journal of Thermal Analysis and Calorimetry, 92, 893-897.
  • [27] Haurie, L., Fernandez, A. I., Velasco, J. I., Chimenos, J. M., Lopez-Cuesta, J. M., & Espiell, F. (2007). Effects of milling on the thermal stability of synthetic hydromagnesite. Materials Research Bulletin, 42(6), 1010-1018.
  • [28] Inglethorpe, S. D. J., & Stamatakis, M. G. (2003). Thermal decomposition of natural mixtures of hydromagnesite and huntite from Kozani, Northern Greece. Mineral Wealth, 126, 7-18.
  • [29] Khan, N., Dollimore, D., Alexander, K., & Wilburn, F. W. (2001). The origin of the exothermic peak in the thermal decomposition of basic magnesium carbonate. Thermochimica Acta, 367, 321-333.
  • [30] Ozao, R., & Otsuka, R. (1985). Thermoanalytical investigation of huntite. Thermochimica acta, 86, 45-58. [31] Padeste, C., Oswald, H. R., & Reller, A. (1991). The thermal behaviour of pure and nickel-doped hydromagnesite in different atmospheres. Materials research bulletin, 26(12), 1263-1268.
  • [32] Rajeswara R, Chohan VS. Kinetics of thermal decomposition of hydromagnesite. Chem Eng Technol 1995;18:359e63.
  • [33] Sawada, Y., Uematsu, K., Mizutani, N., & Kato, M. (1978). Thermal decomposition of hydromagnesite 4MgCO3· Mg (OH) 2· 4H2O. Journal of Inorganic and Nuclear Chemistry, 40(6), 979-982.
  • [34] Sawada, Y., Uematsu, K., Mizutani, N., & Kato, M. (1978). Thermal decomposition of hydromagnesite 4MgCO3-Mg (OH) 2-4H2O under different partial pressures of carbon dioxide. Thermochimica acta, 27(1-3), 45-59.
  • [35] Sawada, Y., Yamaguchi, J., Sakurai, O., Uematsu, K., Mizutani, N., & Kato, M. (1979). Thermal decomposition of basic magnesium carbonates under high-pressure gas atmoshpheres. Thermochimica acta, 32(1-2), 277-291.
  • [36] Sawada, Y., Yamaguchi, J., Sakurai, O., Uematsu, K., Mizutani, N., & Kato, M. (1979). Thermogravimetric study on the decomposition of hydromagnesite 4 MgCO3· Mg (OH) 2· 4 H2O. Thermochimica acta, 33, 127-140.
  • [37] Sawada, Y., Yamaguchi, J., Sakurai, O., Uematsu, K., Mizutani, N., & Kato, M. (1979). Isothermal differential scanning calorimetry on an exothermic phenomenon during thermal decomposition of hydromagnesite 4 MgCO3· Mg (OH) 2· 4 H2O. Thermochimica Acta, 34(2), 233-237.
There are 35 citations in total.

Details

Primary Language English
Subjects Polymer Science and Technologies, Composite and Hybrid Materials
Journal Section Research Article
Authors

Halil Can Uğraşkan 0009-0002-6410-4995

Fatma Sevde Duman 0009-0007-5827-2120

Serkan Emik 0000-0002-6005-9704

Project Number AGM22C010523
Early Pub Date December 18, 2023
Publication Date December 21, 2023
Submission Date December 4, 2023
Acceptance Date December 18, 2023
Published in Issue Year 2023 Volume: 8 Issue: 2

Cite

APA Uğraşkan, H. C., Duman, F. S., & Emik, S. (2023). Investigation of the Effect of Huntit Filler on Flame Retardancy and Mechanical Properties of Silicone Rubber-based Materials in Cable Applications. Open Journal of Nano, 8(2), 107-116. https://doi.org/10.56171/ojn.1400079
AMA Uğraşkan HC, Duman FS, Emik S. Investigation of the Effect of Huntit Filler on Flame Retardancy and Mechanical Properties of Silicone Rubber-based Materials in Cable Applications. OJN. December 2023;8(2):107-116. doi:10.56171/ojn.1400079
Chicago Uğraşkan, Halil Can, Fatma Sevde Duman, and Serkan Emik. “Investigation of the Effect of Huntit Filler on Flame Retardancy and Mechanical Properties of Silicone Rubber-Based Materials in Cable Applications”. Open Journal of Nano 8, no. 2 (December 2023): 107-16. https://doi.org/10.56171/ojn.1400079.
EndNote Uğraşkan HC, Duman FS, Emik S (December 1, 2023) Investigation of the Effect of Huntit Filler on Flame Retardancy and Mechanical Properties of Silicone Rubber-based Materials in Cable Applications. Open Journal of Nano 8 2 107–116.
IEEE H. C. Uğraşkan, F. S. Duman, and S. Emik, “Investigation of the Effect of Huntit Filler on Flame Retardancy and Mechanical Properties of Silicone Rubber-based Materials in Cable Applications”, OJN, vol. 8, no. 2, pp. 107–116, 2023, doi: 10.56171/ojn.1400079.
ISNAD Uğraşkan, Halil Can et al. “Investigation of the Effect of Huntit Filler on Flame Retardancy and Mechanical Properties of Silicone Rubber-Based Materials in Cable Applications”. Open Journal of Nano 8/2 (December 2023), 107-116. https://doi.org/10.56171/ojn.1400079.
JAMA Uğraşkan HC, Duman FS, Emik S. Investigation of the Effect of Huntit Filler on Flame Retardancy and Mechanical Properties of Silicone Rubber-based Materials in Cable Applications. OJN. 2023;8:107–116.
MLA Uğraşkan, Halil Can et al. “Investigation of the Effect of Huntit Filler on Flame Retardancy and Mechanical Properties of Silicone Rubber-Based Materials in Cable Applications”. Open Journal of Nano, vol. 8, no. 2, 2023, pp. 107-16, doi:10.56171/ojn.1400079.
Vancouver Uğraşkan HC, Duman FS, Emik S. Investigation of the Effect of Huntit Filler on Flame Retardancy and Mechanical Properties of Silicone Rubber-based Materials in Cable Applications. OJN. 2023;8(2):107-16.

23830

The Open Journal of Nano(OJN) deals with information related to (but not limited to) physical, chemical and biological phenomena and processes ranging from molecular to microscale structures.

All publications in The Open Journal of Nano are licensed under the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.