Research Article
BibTex RIS Cite

Colloidal Silica Production with Resin from Sodium Silicate and Optimization of Process

Year 2024, Volume: 9 Issue: 1, 1 - 10, 29.06.2024
https://doi.org/10.56171/ojn.1402531

Abstract

Colloidal silica is a stable and homogeneously dispersed form of amorphous silicon dioxide (SiO2) nanoparticles in water. Colloidal silica has been the focus of research due to large surface area, biocompatibility, low toxicity and chemical and thermal stability. It has been used in a wide variety of industrial applications, including pulp and paper, chromatography, electronics, foods, and colloids, as well as in the ceramics and glass industry. In this study, colloidal silica was produced using cationic resin and sodium silicate and process conditions were optimized. Temperature (50-80 °C), mixing speed (200-500 rpm) and time (20-120 min.), which significantly affect the particle size, were selected as parameters. Particle size distribution (PSD) analyzes of colloidal silica particles were performed to determine appropriate levels of the parameters. The most suitable process conditions are 50°C temperature, 40 min. and 300 rpm. The average particle size of colloidal silica produced in optimum conditions was measured as 80 nm.

Supporting Institution

This study was supported by Project No. 1919B012107996 in Tübitak 2209/A category

References

  • [1] Bergna, H. E. (1994). Colloid chemistry of silica: An overview. The Colloid Chemistry of Silica Chapter 1. Advances in Chemistry 234(1994), 1-47. DOI: 10.1021/ba-1994-0234.ch001
  • [2] Asghar, K., Gholam Reza, V., Mohammad, A., & Mehdi, F. (2008). Preparation and characterization of colloidal silica in alkaline and constant range of pH. Iranian Journal of Chemistry and Chemical Engineering, 27(4).
  • [3] Blute, I., Pugh, R. J., van de Pas, J., & Callaghan, I. (2007). Silica nanoparticle sols. 1. Surface chemical characterization and evaluation of the foam generation (foamability). Journal of Colloid and Interface Science, 313(2). https://doi.org/10.1016/j.jcis.2007.05.013
  • [4] Hyde, E. D. E. R., Seyfaee, A., Neville, F., & Moreno-Atanasio, R. (2016). Colloidal Silica Particle Synthesis and Future Industrial Manufacturing Pathways: A Review. In Industrial and Engineering Chemistry Research (Vol. 55, Issue 33). https://doi.org/10.1021/acs.iecr.6b01839
  • [5] Falamaki, C. (2002). Mass transfer mechanisms in the fixed-bed ion-exchange process for dilute colloidal silica manufacture. Chemical Engineering and Technology, 25(9). https://doi.org/10.1002/1521-4125(20020910)25:9<905:AID-CEAT905>3.0.CO;2-8
  • [6] Kobayashi, M., Juillerat, F., Galletto, P., Bowen, P., & Borkovec, M. (2005). Aggregation and charging of colloidal silica particles: Effect of particle size. Langmuir, 21(13). https://doi.org/10.1021/la046829z
  • [7] Asadi, Z., & Norouzbeigi, R. (2017). Optimization of colloidal nanosilica production from expanded perlite using Taguchi design of experiments. Ceramics International, 43(14). https://doi.org/10.1016/j.ceramint.2017.05.332
  • [8] Kong, H., Huo, J., Liang, C., Li, S., Liu, W., & Song, Z. (2016). Polydisperse spherical colloidal silica particles: Preparation and application. Chinese Physics B, 25(11). https://doi.org/10.1088/1674-1056/25/11/118202
  • [9] Qomariyah, L., Sasmita, F. N., Novaldi, H. R., Widiyastuti, W., & Winardi, S. (2018). Preparation of Stable Colloidal Silica with Controlled Size Nano Spheres from Sodium Silicate Solution. IOP Conference Series: Materials Science and Engineering, 395(1). https://doi.org/10.1088/1757-899X/395/1/012017
  • [10] Cho, G. S., Lee, D. H., Lim, H. M., Lee, S. H., Kim, C., & Kim, D. S. (2014). Characterization of surface charge and zeta potential of colloidal silica prepared by various methods. Korean Journal of Chemical Engineering, 31(11). https://doi.org/10.1007/s11814-014-0112-5
  • [11] Kim, T., Hwang, S., & Hyun, S. (2008). Development of a continuous manufacturing process for silica sols via the ion-exchange of a waterglass. Industrial and Engineering Chemistry Research, 47(18). https://doi.org/10.1021/ie071009d
  • [12] Tsai, M. S., & Wu, W. C. (2004). Aluminum modified colloidal silica via sodium silicate. Materials Letters, 58(12–13). https://doi.org/10.1016/j.matlet.2003.12.006
  • [13] Tsai, M. S. (2004). The study of formation colloidal silica via sodium silicate. Materials Science and Engineering: B, 106(1), 52-55.
  • [14] Igci, N., & Ozel Demiralp, F. D. (2020). A Fourier Transform Infrared Spectroscopic Investigation of Macrovipera lebetina lebetina and M. l. obtusa Crude Venoms. European Journal of Biology, 79(1). https://doi.org/10.26650/EurJBiol.2020.0039
  • [15] Chana, C. K., Pengb, S. L., Chua, I. M., & Ni, S. C. (2001). Effects of heat treatment on the properties of poly(methyl methacrylate)/silica hybrid materials prepared by sol-gel process. Polymer, 42(9). https://doi.org/10.1016/S0032-3861(00)00817-X
  • [16] Musić, S., Filipović-Vinceković, N., & Sekovanić, L. (2011). Precipitation of amorphous SiO2 particles and their properties. Brazilian Journal of Chemical Engineering, 28(1). https://doi.org/10.1590/S0104-66322011000100011
  • [17] Beganskienė, A., Sirutkaitis, V., Juškėnas, R., Kareiva, A., & Kurtinaitienė, M. (2004). FTIR, TEM and NMR investigations of stöber silica nanoparticles Sol-gel coatings for optical and bioapplications View project FTIR, TEM and NMR Iinvestigations of Stöber Silica Nanoparticles. MEDŽIAGOTYRA), 10(4).
  • [18] Liu, K., Feng, Q., Yang, Y., Zhang, G., Ou, L., & Lu, Y. (2007). Preparation and Characterization of amorphous silica nanowires from natural chrysotile. Journal of Non-Crystalline Solids, 353(16–17). https://doi.org/10.1016/j.jnoncrysol.2007.01.033
  • [19] Martinez, J. R., Palomares, S., Ortega-Zarzosa, G., Ruiz, F., Chumakov, Y., (2006). Rietveld refinement of amorphous SiO2 prepared via solgel method. Materials Letters, 60 (29-30), 3526-3529
  • [20] Yoshida, A., (2006). Silicic acids and colloidal silica. In: Bergna, H. E., Roberts, W. O. (eds) Colloidal silica: fundamentals and applications; surfactant science series, vol. 131. CRC Press Taylor &amp; Francis Group, Boca Raton, 37–39.
  • [21] Zou, H., & Schlaad, H. (2015). Thermoresponsive PNIPAM/silica nanoparticles by direct photopolymerization in aqueous media. Journal of Polymer Science, Part A: Polymer Chemistry, 53(10). https://doi.org/10.1002/pola.27593
  • [22] Lazaro, A., Van De Griend, M. C., Brouwers, H. J. H., & Geus, J. W. (2013). The influence of process conditions and Ostwald ripening on the specific surface area of olivine nano-silica. Microporous and Mesoporous Materials, 181. https://doi.org/10.1016/j.micromeso.2013.08.006

Sodyum Silikat ve Reçineden Kolloidal Silika Üretimi ve Proses Şartlarının Optimizasyonu

Year 2024, Volume: 9 Issue: 1, 1 - 10, 29.06.2024
https://doi.org/10.56171/ojn.1402531

Abstract

Kolloidal silika, amorf silisyum dioksit (SiO2) nanopartiküllerinin suda kararlı ve homojen bir şekilde dağılmış halidir. Kolloidal silika, geniş yüzey alanı, biyouyumluluğu, düşük toksisitesi ve kimyasal ve termal kararlılığı nedeniyle araştırmaların odak noktası olmuştur. Kağıt hamuru ve kağıt, kromatografi, elektronik, gıdalar ve kolloidlerin yanı sıra seramik ve cam endüstrisini de içeren çok çeşitli endüstriyel uygulamada kullanılmaktadır. Bu çalışmada, katyonik reçine ve sodyum silikat kullanılarak koloidal silika üretilmiş ve proses koşulları optimize edilmiştir. Parçacık boyutunu önemli ölçüde etkileyen sıcaklık (50-80 °C), karıştırma hızı (200-500 dev./dk.) ve süre (20-120 dk.) parametre olarak seçilmiştir. En uygun proses koşulları 50°C sıcaklık, 40 dk. ve 300 dev/dk.'dir. Optimum koşullarda üretilen koloidal silikanın ortalama parçacık boyutu 80 nm olarak ölçülmüştür.

Supporting Institution

Bu çalışma Tübitak tarafından 1919B012107996 nolu proje ile desteklenmiştir.

References

  • [1] Bergna, H. E. (1994). Colloid chemistry of silica: An overview. The Colloid Chemistry of Silica Chapter 1. Advances in Chemistry 234(1994), 1-47. DOI: 10.1021/ba-1994-0234.ch001
  • [2] Asghar, K., Gholam Reza, V., Mohammad, A., & Mehdi, F. (2008). Preparation and characterization of colloidal silica in alkaline and constant range of pH. Iranian Journal of Chemistry and Chemical Engineering, 27(4).
  • [3] Blute, I., Pugh, R. J., van de Pas, J., & Callaghan, I. (2007). Silica nanoparticle sols. 1. Surface chemical characterization and evaluation of the foam generation (foamability). Journal of Colloid and Interface Science, 313(2). https://doi.org/10.1016/j.jcis.2007.05.013
  • [4] Hyde, E. D. E. R., Seyfaee, A., Neville, F., & Moreno-Atanasio, R. (2016). Colloidal Silica Particle Synthesis and Future Industrial Manufacturing Pathways: A Review. In Industrial and Engineering Chemistry Research (Vol. 55, Issue 33). https://doi.org/10.1021/acs.iecr.6b01839
  • [5] Falamaki, C. (2002). Mass transfer mechanisms in the fixed-bed ion-exchange process for dilute colloidal silica manufacture. Chemical Engineering and Technology, 25(9). https://doi.org/10.1002/1521-4125(20020910)25:9<905:AID-CEAT905>3.0.CO;2-8
  • [6] Kobayashi, M., Juillerat, F., Galletto, P., Bowen, P., & Borkovec, M. (2005). Aggregation and charging of colloidal silica particles: Effect of particle size. Langmuir, 21(13). https://doi.org/10.1021/la046829z
  • [7] Asadi, Z., & Norouzbeigi, R. (2017). Optimization of colloidal nanosilica production from expanded perlite using Taguchi design of experiments. Ceramics International, 43(14). https://doi.org/10.1016/j.ceramint.2017.05.332
  • [8] Kong, H., Huo, J., Liang, C., Li, S., Liu, W., & Song, Z. (2016). Polydisperse spherical colloidal silica particles: Preparation and application. Chinese Physics B, 25(11). https://doi.org/10.1088/1674-1056/25/11/118202
  • [9] Qomariyah, L., Sasmita, F. N., Novaldi, H. R., Widiyastuti, W., & Winardi, S. (2018). Preparation of Stable Colloidal Silica with Controlled Size Nano Spheres from Sodium Silicate Solution. IOP Conference Series: Materials Science and Engineering, 395(1). https://doi.org/10.1088/1757-899X/395/1/012017
  • [10] Cho, G. S., Lee, D. H., Lim, H. M., Lee, S. H., Kim, C., & Kim, D. S. (2014). Characterization of surface charge and zeta potential of colloidal silica prepared by various methods. Korean Journal of Chemical Engineering, 31(11). https://doi.org/10.1007/s11814-014-0112-5
  • [11] Kim, T., Hwang, S., & Hyun, S. (2008). Development of a continuous manufacturing process for silica sols via the ion-exchange of a waterglass. Industrial and Engineering Chemistry Research, 47(18). https://doi.org/10.1021/ie071009d
  • [12] Tsai, M. S., & Wu, W. C. (2004). Aluminum modified colloidal silica via sodium silicate. Materials Letters, 58(12–13). https://doi.org/10.1016/j.matlet.2003.12.006
  • [13] Tsai, M. S. (2004). The study of formation colloidal silica via sodium silicate. Materials Science and Engineering: B, 106(1), 52-55.
  • [14] Igci, N., & Ozel Demiralp, F. D. (2020). A Fourier Transform Infrared Spectroscopic Investigation of Macrovipera lebetina lebetina and M. l. obtusa Crude Venoms. European Journal of Biology, 79(1). https://doi.org/10.26650/EurJBiol.2020.0039
  • [15] Chana, C. K., Pengb, S. L., Chua, I. M., & Ni, S. C. (2001). Effects of heat treatment on the properties of poly(methyl methacrylate)/silica hybrid materials prepared by sol-gel process. Polymer, 42(9). https://doi.org/10.1016/S0032-3861(00)00817-X
  • [16] Musić, S., Filipović-Vinceković, N., & Sekovanić, L. (2011). Precipitation of amorphous SiO2 particles and their properties. Brazilian Journal of Chemical Engineering, 28(1). https://doi.org/10.1590/S0104-66322011000100011
  • [17] Beganskienė, A., Sirutkaitis, V., Juškėnas, R., Kareiva, A., & Kurtinaitienė, M. (2004). FTIR, TEM and NMR investigations of stöber silica nanoparticles Sol-gel coatings for optical and bioapplications View project FTIR, TEM and NMR Iinvestigations of Stöber Silica Nanoparticles. MEDŽIAGOTYRA), 10(4).
  • [18] Liu, K., Feng, Q., Yang, Y., Zhang, G., Ou, L., & Lu, Y. (2007). Preparation and Characterization of amorphous silica nanowires from natural chrysotile. Journal of Non-Crystalline Solids, 353(16–17). https://doi.org/10.1016/j.jnoncrysol.2007.01.033
  • [19] Martinez, J. R., Palomares, S., Ortega-Zarzosa, G., Ruiz, F., Chumakov, Y., (2006). Rietveld refinement of amorphous SiO2 prepared via solgel method. Materials Letters, 60 (29-30), 3526-3529
  • [20] Yoshida, A., (2006). Silicic acids and colloidal silica. In: Bergna, H. E., Roberts, W. O. (eds) Colloidal silica: fundamentals and applications; surfactant science series, vol. 131. CRC Press Taylor &amp; Francis Group, Boca Raton, 37–39.
  • [21] Zou, H., & Schlaad, H. (2015). Thermoresponsive PNIPAM/silica nanoparticles by direct photopolymerization in aqueous media. Journal of Polymer Science, Part A: Polymer Chemistry, 53(10). https://doi.org/10.1002/pola.27593
  • [22] Lazaro, A., Van De Griend, M. C., Brouwers, H. J. H., & Geus, J. W. (2013). The influence of process conditions and Ostwald ripening on the specific surface area of olivine nano-silica. Microporous and Mesoporous Materials, 181. https://doi.org/10.1016/j.micromeso.2013.08.006
There are 22 citations in total.

Details

Primary Language English
Subjects Polymer Science and Technologies, Chemical Engineering (Other)
Journal Section Research Article
Authors

Buse Akkaya 0009-0005-7414-4837

Jiyan Aslan 0009-0002-8543-2736

Rukiye Taşdemir 0000-0002-1150-1420

İlker Erdem 0000-0001-5743-0835

Mehmet Gönen 0000-0001-5780-4622

Publication Date June 29, 2024
Submission Date December 9, 2023
Acceptance Date January 1, 2024
Published in Issue Year 2024 Volume: 9 Issue: 1

Cite

APA Akkaya, B., Aslan, J., Taşdemir, R., Erdem, İ., et al. (2024). Colloidal Silica Production with Resin from Sodium Silicate and Optimization of Process. Open Journal of Nano, 9(1), 1-10. https://doi.org/10.56171/ojn.1402531
AMA Akkaya B, Aslan J, Taşdemir R, Erdem İ, Gönen M. Colloidal Silica Production with Resin from Sodium Silicate and Optimization of Process. Open J. Nano. June 2024;9(1):1-10. doi:10.56171/ojn.1402531
Chicago Akkaya, Buse, Jiyan Aslan, Rukiye Taşdemir, İlker Erdem, and Mehmet Gönen. “Colloidal Silica Production With Resin from Sodium Silicate and Optimization of Process”. Open Journal of Nano 9, no. 1 (June 2024): 1-10. https://doi.org/10.56171/ojn.1402531.
EndNote Akkaya B, Aslan J, Taşdemir R, Erdem İ, Gönen M (June 1, 2024) Colloidal Silica Production with Resin from Sodium Silicate and Optimization of Process. Open Journal of Nano 9 1 1–10.
IEEE B. Akkaya, J. Aslan, R. Taşdemir, İ. Erdem, and M. Gönen, “Colloidal Silica Production with Resin from Sodium Silicate and Optimization of Process”, Open J. Nano, vol. 9, no. 1, pp. 1–10, 2024, doi: 10.56171/ojn.1402531.
ISNAD Akkaya, Buse et al. “Colloidal Silica Production With Resin from Sodium Silicate and Optimization of Process”. Open Journal of Nano 9/1 (June 2024), 1-10. https://doi.org/10.56171/ojn.1402531.
JAMA Akkaya B, Aslan J, Taşdemir R, Erdem İ, Gönen M. Colloidal Silica Production with Resin from Sodium Silicate and Optimization of Process. Open J. Nano. 2024;9:1–10.
MLA Akkaya, Buse et al. “Colloidal Silica Production With Resin from Sodium Silicate and Optimization of Process”. Open Journal of Nano, vol. 9, no. 1, 2024, pp. 1-10, doi:10.56171/ojn.1402531.
Vancouver Akkaya B, Aslan J, Taşdemir R, Erdem İ, Gönen M. Colloidal Silica Production with Resin from Sodium Silicate and Optimization of Process. Open J. Nano. 2024;9(1):1-10.

23830

The Open Journal of Nano(OJN) deals with information related to (but not limited to) physical, chemical and biological phenomena and processes ranging from molecular to microscale structures.

All publications in The Open Journal of Nano are licensed under the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.