Review
BibTex RIS Cite

Bakteriler Şehri

Year 2024, Volume: 9 Issue: 1, 11 - 21, 29.06.2024
https://doi.org/10.56171/ojn.1446829

Abstract

Özellikle canlı dokular, implantlar, kateterler, kalp pilleri, protez kalp kapakçıkları, kompozit reçineler, cam iyonomer simanlar, kronik yaralar, kontakt lensler ve seramik malzemeler vb. artık tüm yüzeylerdeki bakterilerin mikro-sosyal bir yaşam tarzı yaşadıkları kanıtlanmıştır. Quorum Sensing System (QS), N-Açil Homoserin Lakton (AHL) sinyal molekülleri aracılığıyla iletişim kurarak hayati önemdeki virülens faktörlerinden biri olan biyofilm katmanını oluşturur. Robert Koch’un 1884 yılında yayınlanan varsayımlarının tartışılmasıyla 1978'de Bill Costerton, kronik enfeksiyonlarda biyofilm hasarının büyüklüğü hususunda uyarılarda bulundu. 2012 yılında Biyofilmin babası Costerton’un biyofilm konulu araştırmaları çığır açtı. Smith’in 1905 yılında ilk kez gündeme getirdiği “Bakteri-bakteri iletişimi” kavramı QS sistemiyle, bu sistemin en önemli virülens faktörü olan biyofilm, enfeksiyon hastalıklarını devasa bilimsel bir boyuta geçirmiştir. Biyofilmlerin içinde bakteriler kolaylıkla üreyebiliyor ve birbirleriyle iletişim kurabiliyor, aslında bakterilerin birbirleriyle ışık hızında QS iletişim kurduğu bir fiber optik sistem vardır. Biyofilm, Watnick ve Kolter (2000) tarafından 'Mikroplar Şehri' olarak tanımlanmıştır. Biyofilm, tutkal benzeri bir filmle bir arada tutulan ve korunan farklı mikroorganizmaların bir karışımıdır. Bakterilerin, mantarların, mayaların, küflerin, mikotoksinlerin, virüslerin ve parazitlerin korunmak ve bağışıklık sisteminden kaçmak için oluşturduğu sümüksü bir matris ve kaplamadır. Düzensiz bir sinir sistemi, bağışıklık sisteminin vergilendirilmesine yol açabilir. Bu tutkal benzeri balçık tabakası bakteriler için koruyucu bir 'uyku tulumu' oluşturur, böylece bir yandan kronik hastalıklar yaratırken bir yandan da içinizde gelişmek olan en iyi yaptıkları şeyi yapmaya devam edebilirler. Bağışıklık sistemi bakterileri tam olarak tanır ancak biyofilm gibi koruyucu bir tabaka nedeniyle onlara ulaşamaz ve çoğu zaman otoimmün bir durum yaratır veya etkili olamaz. Özetle, biyofilmin anlaşılması, biyofilmle ilişkili hastalıkların yönetilmesi ve ortadan kaldırılması için hayati öneme sahiptir. Bu nedenle mevcut inceleme, biyofilm, biyofilm mimarisi ve bunun tüm canlıların sağlığı ve hastalıkları üzerindeki etkilerini kapsayan güncel kavramları tartışmaktadır.

References

  • Hall-Stoodley, L., Costerton, J. W., & Stoodley, P. 2004. Bacterial biofilms: from the natural environment to infectious diseases. Nature reviews microbiology, 2(2), 95-108. http://doi.org/10.1038/nrmicro82
  • Costerton, J.W., Cheng, K., Geesey, G.G., Ladd, T.I., Nickel, J.C., Dasgupta, M. and Marrie, T.J. 1987. Bacterial biofilms in nature and disease. Annual Reviews in Microbiology, 41(1); 435-464. http://doi.org/10.1146/annurev.mi.41.100187.002251
  • Angst, E.C. 1923. The fouling of ship bottoms by bacteria. Report, Bureau Construction and repair. United States Navy Department, Washington, DC.
  • Zobell, C.E. and Allen, E.C. 1935. The significance of marine bacteria in the fouling of submerged surfaces. Journal of Bacteriology, 29(3); 239. https://doi.org/ 10.1128/jb.29.3.239-251.1935.
  • Donlan, R.M. 2002. Biofilms: microbial life on surfaces. Emerging Infectious Diseases, 8(9); 881-890. http://doi.org/10.3201/eid0809.020063
  • Høiby, N. 2014. A personal history of research on microbial biofilms and biofilm infections. Pathogens and Disease, 70(3); 205-211. http://doi.org/10.1111/2049-632X.12165
  • He, W., Liu, H., Wang, Z., Tay, F. R., & Shen, Y. 2024. The Dynamics of Bacterial Proliferation, Viability, and Extracellular Polymeric Substances in Oral Biofilm Development. Journal of Dentistry, 104882. https://doi.org/10.1016/j.jdent.2024.104882
  • Filik, F. 2019. Bazı bakteriyel balık patojenlerinde biyofilm oluşumuna farklı maddelerin in vitro etkisinin tespiti (Master's thesis, Süleyman Demirel University, Fen Bilimleri Enstitüsü, Su Ürünleri Mühendisliği).
  • Wang, L., Gu, B., Zhang, L., & Zhu, Z. (Eds.). 2024. Recent Advances in Bacterial Biofilm Studies: Formation, Regulation, and Eradication in Human Infections.
  • Marshall, K.C., 1992. Biofilms: an overview of bacterial adhesion activity and control at surfaces. American Society for Microbiology News, 58; 202–207.
  • Poortinga, A.T., Bos, R. and Busscher, H.J. 2001. Charge transfer during staphylococcal adhesion to tinox coatings with different specific resistivity. Biophysical Chemistry, 91(3), 273-279.
  • Dunne, W.M. 2002. Bacterial adhesion: Seen any good biofilms lately? Clinical Microbiology Reviews, 15(2); 155-166. http://doi.org/10.1128/CMR.15.2.155-166.2002
  • O'Toole, G., Kaplan, H.B. and Kolter, R. 2000. Biofilm formation as microbial development. Annual Reviews in Microbiology, 54(1); 49-79.
  • Liu, X., Xia, X., Liu, Y., Li, Z., Shi, T., Zhang, H., & Dong, Q. 2024. Recent advances on the formation, detection, resistance mechanism, and control technology of Listeria monocytogenes biofilm in food industry. Food Research International, 114067. https://doi.org/10.1016/j.foodres.2024.114067
  • Vadillo-Rodriguez, V., Busscher, H.J., van der Mei, H.C., de Vries, J. and Norde, W. 2005. Role of lactobacillus cell surface hydrophobicity as probed by AFM in adhesion to surfaces at low and high ionic strength. Colloids and Surfaces B: Biointerfaces, 41(1); 33-41. https://doi.org/10.1016/j.colsurfb.2004.10.028
  • Ning, Z.; Xue, B.; Wang, H. 2021. Evaluation of the Adhesive Potential of Bacteria Isolated from Meat-Related Sources. Applied Sciences 11(22); 10652. https://doi.org/10.3390/app112210652
  • Hancock, I.C. 1991. Microbial cell surface architecture. Microbial Cell Surface Analysis, 23-59.
  • Characklis, W.G. and Marshall, K.C. 1990. Biofilms. John Wiley, New York.
  • Stoodley, P., Sauer, K., Davies, D.G. and Costerton, J.W. 2002. Biofilms as complex differentiated communities. Annual Review of Microbiology, 56;187-209. https://doi.org/10.1146/annurev.micro.56.012302.160705
  • Dayton, H., Kiss, J., Wei, M., Chauhan, S., LaMarre, E., Cornell, W. C., ... & Dietrich, L. E. (2024). Cellular arrangement impacts metabolic activity and antibiotic tolerance in Pseudomonas aeruginosa biofilms. Plos Biology, 22(2), e3002205. https://doi.org/10.1371/journal.pbio.3002205
  • Cao, M., Su, J., Zhang, L., Ali, A., Wang, Z., Wang, Y., & Bai, Y. 2024. Loofah sponge crosslinked polyethyleneimine loaded with biochar biofilm reactor for ecological remediation of oligotrophic water: Mechanism, performance, and functional characterization. Bioresource Technology, 130567. https://doi.org/10.1016/j.biortech.2024.130567
  • Telgmann, U., Horn, H. and Morgenroth, E. 2004. Influence of growth history on sloughing and erosion from biofilms. Water Research, 38(17); 3671-3684. https://doi.org/10.1016/j.watres.2004.05.020
  • Wilson, S., Hamilton, M.A., Hamilton, G.C., Schumann, M.R. and Stoodley, P. 2004. Statistical quantification of detachment rates and size distributions of cell clumps from wild-type (PAO1) and cell signaling mutant (JP1) Pseudomonas aeruginosa biofilms. Applied and Environmental Microbiology, 70(10); 5847-5852. https://doi.org/10.1128/AEM.70.10.5847-5852.2004
  • Lucinda Hampton, 2019. Physiopedia. Biofilms Role in Chronic Infections. https://commons.wikimedia.org/wiki/File:Myxococcus_xanthus_rippling.png https://www.physio-pedia.com/Biofilms_Role_in_Chronic_Infections#cite_note-:2-1
  • Jamal, M., Ahmad, W., Andleeb, S., Jalil, F., Imran, M., Nawaz, M.A., Hussain, T., Ali, M., Rafiq, M., Kamil, M.A. 2019. Bacterial biofilm and associated infections. Journal of the Chinese Medical Association. 2018 Jan 1;81(1):7-11. Available from: https://www.sciencedirect.com/science/article/pii/S1726490117302587 (last accessed 7.10.2019) Last accessed 05.02.2024
  • Cavallo, I., Sivori, F., Mastrofrancesco, A., Abril, E., Pontone, M., Di Domenico, E. G., & Pimpinelli, F. 2024. Bacterial Biofilm in Chronic Wounds and Possible Therapeutic Approaches. Biology, 13(2), 109. https://doi.org/10.3390/biology13020109
  • Khatoon, Z., McTiernan, C.D., Suuronen, E.J., Mah, T.F., & Alarcon, E.I. 2019. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon. 2018 Dec 1;4(12):e01067. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6312881/ (last accessed 7.10.19) Last accessed 05.02.2024
  • Siqueira, F. D. S. 2021. Estudos químicos, moleculares, microbiológicos e toxicológicos de novas moléculas eficazes contra biofilmes de Pseudomonas aeruginosa e micobactérias de crescimento rápido (Doctoral dissertation, Universidade Federal de Santa Maria). http://repositorio.ufsm.br/handle/1/22467
  • Hale, S. J., Cameron, A. J., Lux, C. A., Biswas, K., Kim, R., O'Carroll, M., ... & Wagner Mackenzie, B. 2024. Polymyxin B and ethylenediaminetetraacetic acid act synergistically against Pseudomonas aeruginosa and Staphylococcus aureus. Microbiology Spectrum, e01709-23. https://doi.org/10.1128/spectrum.01709-23
  • Zhou, Z., Tang, J., Tang, K., An, M., Liu, Z., Wu, Z., ... & He, C. 2024. Selective enrichment of bacteria and antibiotic resistance genes in microplastic biofilms and their potential hazards in coral reef ecosystems. Chemosphere, 352, 141309. https://doi.org/10.1016/j.chemosphere.2024.141309
  • Solomon, S. L., & Oliver, K. B. 2014. Antibiotic resistance threats in the United States: stepping back from the brink. Am Fam Physician, 89(12), 938-941.
  • Hogberg, L. D., Magiorakos, A. P., Heuer, O. E., & Monnet, D. L. 2014. Antimicrobial resistance surveillance in Europe: regional pooling of national data from a small number of sites can be misleading. Diagn Microbiol Infect Dis, 80(1), 90. http://doi.org/10.1016/j.diagmicrobio.2014.03.015
  • Weist, K., & Diaz Hogberg, L. (2014). ECDC publishes 2013 surveillance data on antimicrobial resistance and antimicrobial consumption in Europe. Euro Surveill, 19(46). doi:10.2807/1560- 7917.es2014.19.46.20962
  • Meinders, J., Van der Mei, H. and Busscher, H. 1995. Deposition efficiency and reversibility of bacterial adhesion under flow. Journal of Colloid and Interface Science, 176(2); 329-341.
  • Parkar, S., Flint, S. and Brooks, J.D. 2004. Evaluation of the effect of cleaning regimes on biofilms of thermophilic bacilli on stainless steel. Journal of Applied Microbiology, 96(1); 110-116.
  • Flint, S.H., Brooks, J. & Bremer, P. 1997. The influence of cell surface properties of thermophilic streptococci on attachment to stainless steel. Journal of Applied Microbiology, 83(4); 508-517. http://doi.org/10.1046/j.1365-2672.1997.00264.x
  • Palmer, J., Flint, S., & Brooks, J. 2007. Bacterial cell attachment, the beginning of a biofilm. Journal of Industrial Microbiology and Biotechnology, 34(9); 577-588.
  • Ten Cate JM. 2006. Biofilms, a new approach to the microbiology of dental plaque. Odontology, 2006,94(1):1-9
  • Mizuta, M., & Suzuki, I. 2024. Streptococcus mutans Membrane Vesicles, Containing Insoluble Glucan Synthase and Extracellular DNA, Contribute to the Promotion of Initial Attachment and Colonization of Actinomyces oris. International Journal of Oral-Medical Sciences, 22(2), 57-68. https://doi.org/10.5466/ijoms.22.57
  • Toushik, S.H., Rahaman Mizan, M.F., Hossain, M.I., Ha, S.D. 2020. Fighting with old foes: The pledge of microbe-derived biological agents to defeat monoand mixed-bacterial biofilms concerning food industries. Trends in Food Science & Technology, 99, 413-425. https://doi.org/10.1016/j.tifs.2020.03.019
  • World Health Organization, WHO, 2019. Food safety https://www.who.int/news-room/fact-sheets/detail/food-safety/ (2019), Accessed 7th Oct 2019
  • Percival, S. L., Malic, S., Cruz, H., & Williams, D. W. 2011. Introduction to biofilms. Biofilms and veterinary medicine, 41-68.
  • Zobell, C. E. 1943. The effect of solid surfaces upon bacterial activity. Journal of bacteriology, 46(1), 39-56.
  • Wyatt, J. E., Hesketh, L. M., & Handley, P. S. 1987. Lack of correlation between fibrils, hydrophobicity and adhesion for strains of Streptococcus sanguis biotypes I and II. Microbios, 50(202), 7-15.
  • Heukelekian, H., & Heller, A. 1940. Relation between food concentration and surface for bacterial growth. Journal of bacteriology, 40(4), 547-558.
  • Prigent-Combaret, C., Brombacher, E., Vidal, O., Ambert, A., Lejeune, P., Landini, P., & Dorel, C. 2001. Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene. Journal of bacteriology, 183(24), 7213-7223. https://doi.org/10.1128/jb.183.24.7213-7223.2001
  • Upadhyay, A., Pal, D., & Kumar, A. 2024. Interrogating Salmonella Typhi biofilm formation and dynamics to understand antimicrobial resistance. Life Sciences, 339, 122418. https://doi.org/10.1016/j.lfs.2024.122418
  • Papadopoulos, C., Larue, A. E., Toulouze, C., Mokhtari, O., Lefort, J., Libert, E., ... & Davit, Y. 2024. A versatile micromodel technology to explore biofilm development in porous media flows. Lab on a Chip, 24(2), 254-271.
  • Watnick, P., & Kolter, R. 2000. Biofilm, city of microbes. Journal of bacteriology, 182(10), 2675-2679. https://doi.org/10.1128/jb.182.10.2675-2679.2000

City of Bacteria

Year 2024, Volume: 9 Issue: 1, 11 - 21, 29.06.2024
https://doi.org/10.56171/ojn.1446829

Abstract

Especially living tissues, implants, catheters, pacemakers, prosthetic heart valves, composite resins, glass ionomer cements, chronic wounds, contact lenses and ceramic materials, etc. It has now been proven that bacteria on all surfaces live a micro-social lifestyle by using Quorum Sensing System (QS), communicating through N-Acyl Homoserine Lactone (AHL) signaling molecules, and forming biofilm layer, which is one of most vital virulence factors. In 1978, with discussions of Robert Koch's hypotheses published in 1884, Bill Costerton warned about magnitude of biofilm damage in chronic infections. In 2012, Father of biofilm Bill Costerton broke new ground in his research on biofilm. The concept of "Cell-to-cell communication", which Smith first brought to agenda in 1905, has brought infectious diseases to huge scientific level with QS system and biofilm, which is most important virulence factor of this system. Within the biofilms, bacteria can easily reproduce and communicate with each other, there’s actually a fiber optic system that bacteria communicate with each other at speed of light, QS. Biofilm was defined as a ‘City of Microbes’ by Watnick and Kolter, (2000). Biofilm is mixture of different microorganisms that are held together and protected by glue-like film. It’s a slimy matrix and coating that bacteria, fungi, yeast, mold, mycotoxins, viruses and parasites create in order to stay protected and elude immun system. A dysregulated nervous system can lead to taxed immune system. This layer of glue-like slime creates a protective ‘sleeping bag’ for bacteria, so they can continue to do what they do best, which is thriving in you, while creating chronic diseases. The immune system fully recognizes bacteria, however, can’t get to them due to the protective layer as biofilm, thus many times creating an autoimmune situation or cannot effective. In summary, understanding of biofilm is vital to manage and to eradicate biofilm-related diseases. The current review is, therefore, an effort to encompass the current concepts in biofilm, biofilm architectural and its implications in all living creature health and disease.

References

  • Hall-Stoodley, L., Costerton, J. W., & Stoodley, P. 2004. Bacterial biofilms: from the natural environment to infectious diseases. Nature reviews microbiology, 2(2), 95-108. http://doi.org/10.1038/nrmicro82
  • Costerton, J.W., Cheng, K., Geesey, G.G., Ladd, T.I., Nickel, J.C., Dasgupta, M. and Marrie, T.J. 1987. Bacterial biofilms in nature and disease. Annual Reviews in Microbiology, 41(1); 435-464. http://doi.org/10.1146/annurev.mi.41.100187.002251
  • Angst, E.C. 1923. The fouling of ship bottoms by bacteria. Report, Bureau Construction and repair. United States Navy Department, Washington, DC.
  • Zobell, C.E. and Allen, E.C. 1935. The significance of marine bacteria in the fouling of submerged surfaces. Journal of Bacteriology, 29(3); 239. https://doi.org/ 10.1128/jb.29.3.239-251.1935.
  • Donlan, R.M. 2002. Biofilms: microbial life on surfaces. Emerging Infectious Diseases, 8(9); 881-890. http://doi.org/10.3201/eid0809.020063
  • Høiby, N. 2014. A personal history of research on microbial biofilms and biofilm infections. Pathogens and Disease, 70(3); 205-211. http://doi.org/10.1111/2049-632X.12165
  • He, W., Liu, H., Wang, Z., Tay, F. R., & Shen, Y. 2024. The Dynamics of Bacterial Proliferation, Viability, and Extracellular Polymeric Substances in Oral Biofilm Development. Journal of Dentistry, 104882. https://doi.org/10.1016/j.jdent.2024.104882
  • Filik, F. 2019. Bazı bakteriyel balık patojenlerinde biyofilm oluşumuna farklı maddelerin in vitro etkisinin tespiti (Master's thesis, Süleyman Demirel University, Fen Bilimleri Enstitüsü, Su Ürünleri Mühendisliği).
  • Wang, L., Gu, B., Zhang, L., & Zhu, Z. (Eds.). 2024. Recent Advances in Bacterial Biofilm Studies: Formation, Regulation, and Eradication in Human Infections.
  • Marshall, K.C., 1992. Biofilms: an overview of bacterial adhesion activity and control at surfaces. American Society for Microbiology News, 58; 202–207.
  • Poortinga, A.T., Bos, R. and Busscher, H.J. 2001. Charge transfer during staphylococcal adhesion to tinox coatings with different specific resistivity. Biophysical Chemistry, 91(3), 273-279.
  • Dunne, W.M. 2002. Bacterial adhesion: Seen any good biofilms lately? Clinical Microbiology Reviews, 15(2); 155-166. http://doi.org/10.1128/CMR.15.2.155-166.2002
  • O'Toole, G., Kaplan, H.B. and Kolter, R. 2000. Biofilm formation as microbial development. Annual Reviews in Microbiology, 54(1); 49-79.
  • Liu, X., Xia, X., Liu, Y., Li, Z., Shi, T., Zhang, H., & Dong, Q. 2024. Recent advances on the formation, detection, resistance mechanism, and control technology of Listeria monocytogenes biofilm in food industry. Food Research International, 114067. https://doi.org/10.1016/j.foodres.2024.114067
  • Vadillo-Rodriguez, V., Busscher, H.J., van der Mei, H.C., de Vries, J. and Norde, W. 2005. Role of lactobacillus cell surface hydrophobicity as probed by AFM in adhesion to surfaces at low and high ionic strength. Colloids and Surfaces B: Biointerfaces, 41(1); 33-41. https://doi.org/10.1016/j.colsurfb.2004.10.028
  • Ning, Z.; Xue, B.; Wang, H. 2021. Evaluation of the Adhesive Potential of Bacteria Isolated from Meat-Related Sources. Applied Sciences 11(22); 10652. https://doi.org/10.3390/app112210652
  • Hancock, I.C. 1991. Microbial cell surface architecture. Microbial Cell Surface Analysis, 23-59.
  • Characklis, W.G. and Marshall, K.C. 1990. Biofilms. John Wiley, New York.
  • Stoodley, P., Sauer, K., Davies, D.G. and Costerton, J.W. 2002. Biofilms as complex differentiated communities. Annual Review of Microbiology, 56;187-209. https://doi.org/10.1146/annurev.micro.56.012302.160705
  • Dayton, H., Kiss, J., Wei, M., Chauhan, S., LaMarre, E., Cornell, W. C., ... & Dietrich, L. E. (2024). Cellular arrangement impacts metabolic activity and antibiotic tolerance in Pseudomonas aeruginosa biofilms. Plos Biology, 22(2), e3002205. https://doi.org/10.1371/journal.pbio.3002205
  • Cao, M., Su, J., Zhang, L., Ali, A., Wang, Z., Wang, Y., & Bai, Y. 2024. Loofah sponge crosslinked polyethyleneimine loaded with biochar biofilm reactor for ecological remediation of oligotrophic water: Mechanism, performance, and functional characterization. Bioresource Technology, 130567. https://doi.org/10.1016/j.biortech.2024.130567
  • Telgmann, U., Horn, H. and Morgenroth, E. 2004. Influence of growth history on sloughing and erosion from biofilms. Water Research, 38(17); 3671-3684. https://doi.org/10.1016/j.watres.2004.05.020
  • Wilson, S., Hamilton, M.A., Hamilton, G.C., Schumann, M.R. and Stoodley, P. 2004. Statistical quantification of detachment rates and size distributions of cell clumps from wild-type (PAO1) and cell signaling mutant (JP1) Pseudomonas aeruginosa biofilms. Applied and Environmental Microbiology, 70(10); 5847-5852. https://doi.org/10.1128/AEM.70.10.5847-5852.2004
  • Lucinda Hampton, 2019. Physiopedia. Biofilms Role in Chronic Infections. https://commons.wikimedia.org/wiki/File:Myxococcus_xanthus_rippling.png https://www.physio-pedia.com/Biofilms_Role_in_Chronic_Infections#cite_note-:2-1
  • Jamal, M., Ahmad, W., Andleeb, S., Jalil, F., Imran, M., Nawaz, M.A., Hussain, T., Ali, M., Rafiq, M., Kamil, M.A. 2019. Bacterial biofilm and associated infections. Journal of the Chinese Medical Association. 2018 Jan 1;81(1):7-11. Available from: https://www.sciencedirect.com/science/article/pii/S1726490117302587 (last accessed 7.10.2019) Last accessed 05.02.2024
  • Cavallo, I., Sivori, F., Mastrofrancesco, A., Abril, E., Pontone, M., Di Domenico, E. G., & Pimpinelli, F. 2024. Bacterial Biofilm in Chronic Wounds and Possible Therapeutic Approaches. Biology, 13(2), 109. https://doi.org/10.3390/biology13020109
  • Khatoon, Z., McTiernan, C.D., Suuronen, E.J., Mah, T.F., & Alarcon, E.I. 2019. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon. 2018 Dec 1;4(12):e01067. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6312881/ (last accessed 7.10.19) Last accessed 05.02.2024
  • Siqueira, F. D. S. 2021. Estudos químicos, moleculares, microbiológicos e toxicológicos de novas moléculas eficazes contra biofilmes de Pseudomonas aeruginosa e micobactérias de crescimento rápido (Doctoral dissertation, Universidade Federal de Santa Maria). http://repositorio.ufsm.br/handle/1/22467
  • Hale, S. J., Cameron, A. J., Lux, C. A., Biswas, K., Kim, R., O'Carroll, M., ... & Wagner Mackenzie, B. 2024. Polymyxin B and ethylenediaminetetraacetic acid act synergistically against Pseudomonas aeruginosa and Staphylococcus aureus. Microbiology Spectrum, e01709-23. https://doi.org/10.1128/spectrum.01709-23
  • Zhou, Z., Tang, J., Tang, K., An, M., Liu, Z., Wu, Z., ... & He, C. 2024. Selective enrichment of bacteria and antibiotic resistance genes in microplastic biofilms and their potential hazards in coral reef ecosystems. Chemosphere, 352, 141309. https://doi.org/10.1016/j.chemosphere.2024.141309
  • Solomon, S. L., & Oliver, K. B. 2014. Antibiotic resistance threats in the United States: stepping back from the brink. Am Fam Physician, 89(12), 938-941.
  • Hogberg, L. D., Magiorakos, A. P., Heuer, O. E., & Monnet, D. L. 2014. Antimicrobial resistance surveillance in Europe: regional pooling of national data from a small number of sites can be misleading. Diagn Microbiol Infect Dis, 80(1), 90. http://doi.org/10.1016/j.diagmicrobio.2014.03.015
  • Weist, K., & Diaz Hogberg, L. (2014). ECDC publishes 2013 surveillance data on antimicrobial resistance and antimicrobial consumption in Europe. Euro Surveill, 19(46). doi:10.2807/1560- 7917.es2014.19.46.20962
  • Meinders, J., Van der Mei, H. and Busscher, H. 1995. Deposition efficiency and reversibility of bacterial adhesion under flow. Journal of Colloid and Interface Science, 176(2); 329-341.
  • Parkar, S., Flint, S. and Brooks, J.D. 2004. Evaluation of the effect of cleaning regimes on biofilms of thermophilic bacilli on stainless steel. Journal of Applied Microbiology, 96(1); 110-116.
  • Flint, S.H., Brooks, J. & Bremer, P. 1997. The influence of cell surface properties of thermophilic streptococci on attachment to stainless steel. Journal of Applied Microbiology, 83(4); 508-517. http://doi.org/10.1046/j.1365-2672.1997.00264.x
  • Palmer, J., Flint, S., & Brooks, J. 2007. Bacterial cell attachment, the beginning of a biofilm. Journal of Industrial Microbiology and Biotechnology, 34(9); 577-588.
  • Ten Cate JM. 2006. Biofilms, a new approach to the microbiology of dental plaque. Odontology, 2006,94(1):1-9
  • Mizuta, M., & Suzuki, I. 2024. Streptococcus mutans Membrane Vesicles, Containing Insoluble Glucan Synthase and Extracellular DNA, Contribute to the Promotion of Initial Attachment and Colonization of Actinomyces oris. International Journal of Oral-Medical Sciences, 22(2), 57-68. https://doi.org/10.5466/ijoms.22.57
  • Toushik, S.H., Rahaman Mizan, M.F., Hossain, M.I., Ha, S.D. 2020. Fighting with old foes: The pledge of microbe-derived biological agents to defeat monoand mixed-bacterial biofilms concerning food industries. Trends in Food Science & Technology, 99, 413-425. https://doi.org/10.1016/j.tifs.2020.03.019
  • World Health Organization, WHO, 2019. Food safety https://www.who.int/news-room/fact-sheets/detail/food-safety/ (2019), Accessed 7th Oct 2019
  • Percival, S. L., Malic, S., Cruz, H., & Williams, D. W. 2011. Introduction to biofilms. Biofilms and veterinary medicine, 41-68.
  • Zobell, C. E. 1943. The effect of solid surfaces upon bacterial activity. Journal of bacteriology, 46(1), 39-56.
  • Wyatt, J. E., Hesketh, L. M., & Handley, P. S. 1987. Lack of correlation between fibrils, hydrophobicity and adhesion for strains of Streptococcus sanguis biotypes I and II. Microbios, 50(202), 7-15.
  • Heukelekian, H., & Heller, A. 1940. Relation between food concentration and surface for bacterial growth. Journal of bacteriology, 40(4), 547-558.
  • Prigent-Combaret, C., Brombacher, E., Vidal, O., Ambert, A., Lejeune, P., Landini, P., & Dorel, C. 2001. Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene. Journal of bacteriology, 183(24), 7213-7223. https://doi.org/10.1128/jb.183.24.7213-7223.2001
  • Upadhyay, A., Pal, D., & Kumar, A. 2024. Interrogating Salmonella Typhi biofilm formation and dynamics to understand antimicrobial resistance. Life Sciences, 339, 122418. https://doi.org/10.1016/j.lfs.2024.122418
  • Papadopoulos, C., Larue, A. E., Toulouze, C., Mokhtari, O., Lefort, J., Libert, E., ... & Davit, Y. 2024. A versatile micromodel technology to explore biofilm development in porous media flows. Lab on a Chip, 24(2), 254-271.
  • Watnick, P., & Kolter, R. 2000. Biofilm, city of microbes. Journal of bacteriology, 182(10), 2675-2679. https://doi.org/10.1128/jb.182.10.2675-2679.2000
There are 49 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Reviews
Authors

Nurdan Filik 0000-0003-4376-7298

Fethi Filik 0000-0003-3564-8782

Publication Date June 29, 2024
Submission Date March 4, 2024
Acceptance Date March 29, 2024
Published in Issue Year 2024 Volume: 9 Issue: 1

Cite

APA Filik, N., & Filik, F. (2024). City of Bacteria. Open Journal of Nano, 9(1), 11-21. https://doi.org/10.56171/ojn.1446829
AMA Filik N, Filik F. City of Bacteria. Open J. Nano. June 2024;9(1):11-21. doi:10.56171/ojn.1446829
Chicago Filik, Nurdan, and Fethi Filik. “City of Bacteria”. Open Journal of Nano 9, no. 1 (June 2024): 11-21. https://doi.org/10.56171/ojn.1446829.
EndNote Filik N, Filik F (June 1, 2024) City of Bacteria. Open Journal of Nano 9 1 11–21.
IEEE N. Filik and F. Filik, “City of Bacteria”, Open J. Nano, vol. 9, no. 1, pp. 11–21, 2024, doi: 10.56171/ojn.1446829.
ISNAD Filik, Nurdan - Filik, Fethi. “City of Bacteria”. Open Journal of Nano 9/1 (June 2024), 11-21. https://doi.org/10.56171/ojn.1446829.
JAMA Filik N, Filik F. City of Bacteria. Open J. Nano. 2024;9:11–21.
MLA Filik, Nurdan and Fethi Filik. “City of Bacteria”. Open Journal of Nano, vol. 9, no. 1, 2024, pp. 11-21, doi:10.56171/ojn.1446829.
Vancouver Filik N, Filik F. City of Bacteria. Open J. Nano. 2024;9(1):11-2.

23830

The Open Journal of Nano(OJN) deals with information related to (but not limited to) physical, chemical and biological phenomena and processes ranging from molecular to microscale structures.

All publications in The Open Journal of Nano are licensed under the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.