Research Article
BibTex RIS Cite

Elektrik Akım Destekli Sinterleme Yöntemiyle Alüminyum Matrisli Rgo Takviyeli Kompozitlerin Geliştirilmesi

Year 2024, Volume: 9 Issue: 1, 35 - 44, 29.06.2024
https://doi.org/10.56171/ojn.1476115

Abstract

Bu çalışma da toz metalursiji yönteminden faydalanarak alüminyum matrisli indirgenmiş grafen oksit (rGO) takviyeli kompozitler akım destekli sinterleme yöntemi ile (ECAS) üretilmiştir. Üretilen numulerde kullanılan alümiyumun ortalama tane boyutu 20 mikron olup 2 ile 5 tabakalı indirgenmiş grafen oksitler aracılı ile kompozit malzemeler elde edilmiştir. Bu amaçla saf alüminyum, %3, %8 ve %16 rGO katkılı kompozit malzemeler ECAS yöntemi ile 2000A/14 dk şartlarında üretilmiştir. Üretilen kompozitlerin karekterizasyonu için taramalı elektron mikroskobu (SEM) ve X ışınları kırınım analizi (XRD) tekniklerinden faydalanılmıştır. Ayrıca kompozitlerin elektro kimyasal davranışlarını belirlemek amacıyla korozyon testi yapılmıştır. Artan rGO takviyesi ile homojen dağılıma sahip alüminyum matrisli kompozit yapılar elde edilmiştir. rGO fazının varlığı XRD analizi ile de doğrulanmıştır. Elektro kimyasal testler sonucunda artan rGO takviyesi ile korozyon dayanımının arttığı tespit edilmiştir. En yüksek korozyon dayanımına sahip malzemenin de %16 rGO içeren alüminyum matrisli kompozit malzeme ile elde edildiği ortaya konmuştur. Bununla birlikte kompozit malzemelerde en yüksek sertlik değeri %3 rGO içeren kompozit malzemede olduğu, aşınma dayanımı ve sürtünme katsayısı açısından ise optimum sonuca yine en düşük grafen oksit içeren (%3 rGO) kompozit malzemede ulaşılmıştır.

References

  • Aluminium - Element information, properties and uses | Periodic Table. (n.d.). Retrieved November 21, 2023, from https://www.rsc.org/periodic-table/element/13/aluminium
  • Bi, Y., Xing, Y., He, J., Qin, Y., Zhao, H., & Li, Y. (2023). Effect of graphite addition on microstructure and properties of TiC–Ti5Si3–SiC composite coatings reacted from Ti–SiC-graphite powders. Journal of Materials Research and Technology, 27, 6211–6224. https://doi.org/10.1016/J.JMRT.2023.11.032
  • Bianco, A., Cheng, H. M., Enoki, T., Gogotsi, Y., Hurt, R. H., Koratkar, N., Kyotani, T., Monthioux, M., Park, C. R., Tascon, J. M. D., & Zhang, J. (2013). All in the graphene family – A recommended nomenclature for two-dimensional carbon materials. Carbon, 65, 1–6. https://doi.org/10.1016/J.CARBON.2013.08.038
  • Callister, W. D., & Rethwisch, D. G. (2018). Materials Scienceand EngineeringAN INTRODUCTION. https://ftp.idu.ac.id/wp-content/uploads/ebook/tdg/TEKNOLOGI%20REKAYASA%20MATERIAL%20PERTAHANAN/Materials%20Science%20and%20Engineering%20An%20Introduction%20by%20William%20D.%20Callister,%20Jr.,%20David%20G.%20Rethwish%20(z-lib.org).pdf
  • Chen, W., Yan, L., & Bangal, P. R. (2010). Chemical reduction of graphene oxide to graphene by sulfur-containing compounds. Journal of Physical Chemistry C, 114(47), 19885–19890. https://doi.org/10.1021/JP107131V/ASSET/IMAGES/MEDIUM/JP-2010-07131V_0005.GIF
  • Chua, C. K., & Pumera, M. (2014). Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chemical Society Reviews, 43(1), 291–312. https://doi.org/10.1039/C3CS60303B
  • Compston, P., Cantwell, W. J., Cardew-Hall, M. J., Kalyanasundaram, S., & Mosse, L. (2004). Comparison of surface strain for stamp formed aluminum and an aluminum-polypropylene laminate. Journal of Materials Science, 39(19), 6087–6088. https://doi.org/10.1023/B:JMSC.0000041707.68685.72/METRICS
  • Edokali, M., Bocking, R., Mehrabi, M., Massey, A., Harbottle, D., Menzel, R., & Hassanpour, A. (2023). Chemical modification of reduced graphene oxide membranes: Enhanced desalination performance and structural properties for forward osmosis. Chemical Engineering Research and Design, 199, 659–675. https://doi.org/10.1016/J.CHERD.2023.10.022
  • Fernández-Merino, M. J., Guardia, L., Paredes, J. I., Villar-Rodil, S., Solís-Fernández, P., Martínez-Alonso, A., & Tascón, J. M. D. (2010). Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. Journal of Physical Chemistry C, 114(14), 6426–6432. https://doi.org/10.1021/JP100603H/SUPPL_FILE/JP100603H_SI_001.PDF
  • Flora, B., Kumar, R., Tiwari, P., Kumar, A., Ruokolainen, J., Narasimhan, A. K., Kesari, K. K., Gupta, P. K., & Singh, A. (2023). Development of chemically synthesized hydroxyapatite composite with reduced graphene oxide for enhanced mechanical properties. Journal of the Mechanical Behavior of Biomedical Materials, 142, 105845. https://doi.org/10.1016/J.JMBBM.2023.105845
  • Kerli̇, S., Sistemleri Mühendisliği Bölümü, E., Teknoloji Fakültesi, E., Sütçü İmam Üniversitesi, K., & Geliş, T. (2017). İNDİRGENMİŞ GRAFEN OKSİT-ÇİNKO OKSİT-TİTANYUM DİOKSİT KOMPOZİT MALZEME ÜRETİMİ VE UYGULAMASI. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 6(1), 220–225. https://doi.org/10.28948/NGUMUH.298162
  • Le, H. N., Thai, D., Nguyen, T. T., Dao, T. B. T., Nguyen, T. Do, Tieu, D. T., & Ha Thuc, C. N. (2023). Improving safety and efficiency in graphene oxide production technology. Journal of Materials Research and Technology, 24, 4440–4453. https://doi.org/10.1016/J.JMRT.2023.04.050
  • Rudenko, R. M., Voitsihovska, O. O., & Poroshin, V. N. (2023). Enhancement of electrical conductivity of hydrazine-reduced graphene oxide under thermal annealing in hydrogen atmosphere. Materials Letters, 331, 133476. https://doi.org/10.1016/J.MATLET.2022.133476
  • Schniepp, H. C., Li, J. L., McAllister, M. J., Sai, H., Herrera-Alonson, M., Adamson, D. H., Prud’homme, R. K., Car, R., Seville, D. A., & Aksay, I. A. (2006). Functionalized single graphene sheets derived from splitting graphite oxide. The Journal of Physical Chemistry. B, 110(17), 8535–8539. https://doi.org/10.1021/JP060936F

Development Of Alumınum Matrıx Rgo Reınforced Composıtes By Electrıc Current Assısted Sınterıng

Year 2024, Volume: 9 Issue: 1, 35 - 44, 29.06.2024
https://doi.org/10.56171/ojn.1476115

Abstract

In this study, reduced graphene oxide (rGO) reinforced composites with aluminium matrix were fabricated by using powder metallurgy method by current assisted sintering (ECAS). The average grain size of aluminium used in the produced samples is 20 microns and composite materials were obtained by means of 2 to 5 layers of reduced graphene oxides. For this purpose, pure aluminium, 3%, 8% and 16% rGO doped composite materials were produced by ECAS method under 2000A/14 min conditions. Scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD) techniques were used for the characterisation of the composites. Corrosion tests were also carried out to determine the electrochemical behaviour of the composites. Aluminium matrix composite structures with homogeneous distribution were obtained with increasing rGO reinforcement. The presence of rGO phase was also confirmed by XRD analysis. As a result of electro chemical tests, it was determined that corrosion resistance increased with increasing rGO reinforcement. It was revealed that the material with the highest corrosion resistance was obtained with aluminium matrix composite material containing 16% rGO. However, the highest hardness value in composite materials was found in the composite material containing 3% rGO, while the optimum result in terms of wear resistance and friction coefficient was reached in the composite material with the lowest graphene oxide content (3% rGO).

References

  • Aluminium - Element information, properties and uses | Periodic Table. (n.d.). Retrieved November 21, 2023, from https://www.rsc.org/periodic-table/element/13/aluminium
  • Bi, Y., Xing, Y., He, J., Qin, Y., Zhao, H., & Li, Y. (2023). Effect of graphite addition on microstructure and properties of TiC–Ti5Si3–SiC composite coatings reacted from Ti–SiC-graphite powders. Journal of Materials Research and Technology, 27, 6211–6224. https://doi.org/10.1016/J.JMRT.2023.11.032
  • Bianco, A., Cheng, H. M., Enoki, T., Gogotsi, Y., Hurt, R. H., Koratkar, N., Kyotani, T., Monthioux, M., Park, C. R., Tascon, J. M. D., & Zhang, J. (2013). All in the graphene family – A recommended nomenclature for two-dimensional carbon materials. Carbon, 65, 1–6. https://doi.org/10.1016/J.CARBON.2013.08.038
  • Callister, W. D., & Rethwisch, D. G. (2018). Materials Scienceand EngineeringAN INTRODUCTION. https://ftp.idu.ac.id/wp-content/uploads/ebook/tdg/TEKNOLOGI%20REKAYASA%20MATERIAL%20PERTAHANAN/Materials%20Science%20and%20Engineering%20An%20Introduction%20by%20William%20D.%20Callister,%20Jr.,%20David%20G.%20Rethwish%20(z-lib.org).pdf
  • Chen, W., Yan, L., & Bangal, P. R. (2010). Chemical reduction of graphene oxide to graphene by sulfur-containing compounds. Journal of Physical Chemistry C, 114(47), 19885–19890. https://doi.org/10.1021/JP107131V/ASSET/IMAGES/MEDIUM/JP-2010-07131V_0005.GIF
  • Chua, C. K., & Pumera, M. (2014). Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chemical Society Reviews, 43(1), 291–312. https://doi.org/10.1039/C3CS60303B
  • Compston, P., Cantwell, W. J., Cardew-Hall, M. J., Kalyanasundaram, S., & Mosse, L. (2004). Comparison of surface strain for stamp formed aluminum and an aluminum-polypropylene laminate. Journal of Materials Science, 39(19), 6087–6088. https://doi.org/10.1023/B:JMSC.0000041707.68685.72/METRICS
  • Edokali, M., Bocking, R., Mehrabi, M., Massey, A., Harbottle, D., Menzel, R., & Hassanpour, A. (2023). Chemical modification of reduced graphene oxide membranes: Enhanced desalination performance and structural properties for forward osmosis. Chemical Engineering Research and Design, 199, 659–675. https://doi.org/10.1016/J.CHERD.2023.10.022
  • Fernández-Merino, M. J., Guardia, L., Paredes, J. I., Villar-Rodil, S., Solís-Fernández, P., Martínez-Alonso, A., & Tascón, J. M. D. (2010). Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. Journal of Physical Chemistry C, 114(14), 6426–6432. https://doi.org/10.1021/JP100603H/SUPPL_FILE/JP100603H_SI_001.PDF
  • Flora, B., Kumar, R., Tiwari, P., Kumar, A., Ruokolainen, J., Narasimhan, A. K., Kesari, K. K., Gupta, P. K., & Singh, A. (2023). Development of chemically synthesized hydroxyapatite composite with reduced graphene oxide for enhanced mechanical properties. Journal of the Mechanical Behavior of Biomedical Materials, 142, 105845. https://doi.org/10.1016/J.JMBBM.2023.105845
  • Kerli̇, S., Sistemleri Mühendisliği Bölümü, E., Teknoloji Fakültesi, E., Sütçü İmam Üniversitesi, K., & Geliş, T. (2017). İNDİRGENMİŞ GRAFEN OKSİT-ÇİNKO OKSİT-TİTANYUM DİOKSİT KOMPOZİT MALZEME ÜRETİMİ VE UYGULAMASI. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 6(1), 220–225. https://doi.org/10.28948/NGUMUH.298162
  • Le, H. N., Thai, D., Nguyen, T. T., Dao, T. B. T., Nguyen, T. Do, Tieu, D. T., & Ha Thuc, C. N. (2023). Improving safety and efficiency in graphene oxide production technology. Journal of Materials Research and Technology, 24, 4440–4453. https://doi.org/10.1016/J.JMRT.2023.04.050
  • Rudenko, R. M., Voitsihovska, O. O., & Poroshin, V. N. (2023). Enhancement of electrical conductivity of hydrazine-reduced graphene oxide under thermal annealing in hydrogen atmosphere. Materials Letters, 331, 133476. https://doi.org/10.1016/J.MATLET.2022.133476
  • Schniepp, H. C., Li, J. L., McAllister, M. J., Sai, H., Herrera-Alonson, M., Adamson, D. H., Prud’homme, R. K., Car, R., Seville, D. A., & Aksay, I. A. (2006). Functionalized single graphene sheets derived from splitting graphite oxide. The Journal of Physical Chemistry. B, 110(17), 8535–8539. https://doi.org/10.1021/JP060936F
There are 14 citations in total.

Details

Primary Language Turkish
Subjects Composite and Hybrid Materials, Material Characterization
Journal Section Research Article
Authors

Yakup Pehlivan 0000-0001-5412-1324

Harun Gül 0000-0002-4589-3506

Publication Date June 29, 2024
Submission Date April 30, 2024
Acceptance Date June 28, 2024
Published in Issue Year 2024 Volume: 9 Issue: 1

Cite

APA Pehlivan, Y., & Gül, H. (2024). Elektrik Akım Destekli Sinterleme Yöntemiyle Alüminyum Matrisli Rgo Takviyeli Kompozitlerin Geliştirilmesi. Open Journal of Nano, 9(1), 35-44. https://doi.org/10.56171/ojn.1476115
AMA Pehlivan Y, Gül H. Elektrik Akım Destekli Sinterleme Yöntemiyle Alüminyum Matrisli Rgo Takviyeli Kompozitlerin Geliştirilmesi. Open J. Nano. June 2024;9(1):35-44. doi:10.56171/ojn.1476115
Chicago Pehlivan, Yakup, and Harun Gül. “Elektrik Akım Destekli Sinterleme Yöntemiyle Alüminyum Matrisli Rgo Takviyeli Kompozitlerin Geliştirilmesi”. Open Journal of Nano 9, no. 1 (June 2024): 35-44. https://doi.org/10.56171/ojn.1476115.
EndNote Pehlivan Y, Gül H (June 1, 2024) Elektrik Akım Destekli Sinterleme Yöntemiyle Alüminyum Matrisli Rgo Takviyeli Kompozitlerin Geliştirilmesi. Open Journal of Nano 9 1 35–44.
IEEE Y. Pehlivan and H. Gül, “Elektrik Akım Destekli Sinterleme Yöntemiyle Alüminyum Matrisli Rgo Takviyeli Kompozitlerin Geliştirilmesi”, Open J. Nano, vol. 9, no. 1, pp. 35–44, 2024, doi: 10.56171/ojn.1476115.
ISNAD Pehlivan, Yakup - Gül, Harun. “Elektrik Akım Destekli Sinterleme Yöntemiyle Alüminyum Matrisli Rgo Takviyeli Kompozitlerin Geliştirilmesi”. Open Journal of Nano 9/1 (June 2024), 35-44. https://doi.org/10.56171/ojn.1476115.
JAMA Pehlivan Y, Gül H. Elektrik Akım Destekli Sinterleme Yöntemiyle Alüminyum Matrisli Rgo Takviyeli Kompozitlerin Geliştirilmesi. Open J. Nano. 2024;9:35–44.
MLA Pehlivan, Yakup and Harun Gül. “Elektrik Akım Destekli Sinterleme Yöntemiyle Alüminyum Matrisli Rgo Takviyeli Kompozitlerin Geliştirilmesi”. Open Journal of Nano, vol. 9, no. 1, 2024, pp. 35-44, doi:10.56171/ojn.1476115.
Vancouver Pehlivan Y, Gül H. Elektrik Akım Destekli Sinterleme Yöntemiyle Alüminyum Matrisli Rgo Takviyeli Kompozitlerin Geliştirilmesi. Open J. Nano. 2024;9(1):35-44.

23830

The Open Journal of Nano(OJN) deals with information related to (but not limited to) physical, chemical and biological phenomena and processes ranging from molecular to microscale structures.

All publications in The Open Journal of Nano are licensed under the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.