Review
BibTex RIS Cite

Graphene, GO, and Borophene: Innovations in QCM-Based Humidity Sensors for Enhanced Sensitivity

Year 2024, Volume: 9 Issue: 2, 135 - 149, 29.12.2024
https://doi.org/10.56171/ojn.1598824

Abstract

Humidity measurements are crucial in daily life as they influence human comfort, health, safety, and product quality. Quartz Crystal Microbalance (QCM) sensors, known for their fast response times and high sensitivity, offer a significant advantage in humidity sensing due to their ability to provide highly linear and accurate measurements. These sensors are particularly valuable because they enable real-time, precise humidity detection with minimal calibration, making them ideal for various applications. This mini-review highlights the significance of QCM sensors, focusing on the sensing layers made from nanomaterial fillers integrated into composite matrices. Typical QCM sensor surfaces are could be coated with highly conductive materials such as graphene, graphene oxide (GO), and borophene, which offer excellent humidity-sensing capabilities due to their two-dimensional allotrope structure and unique properties of carbon and boron. This review begins with a brief overview of humidity measurement principles and QCM sensor characteristics. It then explores a variety of materials used for preparing QCM sensing layers, discussing their advantages and disadvantages for humidity sensor applications. Finally, the review presents future perspectives on the development of layer-by-layer self-assembled conductive polymeric films, novel GO-based composite QCM humidity sensors, and borophene-based humidity sensors, illustrating their potential for multifunctional composites.

Ethical Statement

The authors have no conflicts of interest to declare.

Supporting Institution

Istanbul Technical University

Project Number

MGA-2018-41405 ve MYL-2022-43799

Thanks

The authors would like to thank the Istanbul Technical University Scientific Research Projects Unit (BAP) for their financial support of the MGA-2018-41405 and MYL-2022-43799 projects

References

  • [1] Yao, Y., Huang, X., Chen, Q., Zhang, Z., & Ling, W. (2020). High sensitivity and high stability QCM humidity sensors based on polydopamine coated cellulose nanocrystals/graphene oxide nanocomposite. Nanomaterials, 10(11), 2210.
  • [2] Chen, W., Chen, B., Lv, R., Wu, M., Zhou, J., Lu, B., ... & Tang, L. (2021). Fabrication of quartz crystal microbalance humidity sensors based on super-hydrophilic cellulose nanocrystals. Cellulose, 28(6), 3409-3421.
  • [3] Buxton, P. A., & Mellanby, K. (1934). The measurement and control of humidity. Bulletin of Entomological Research, 25(2), 171-175.
  • [4] Singh, N., Chaturvedi, S., & Akhter, S. (2019, March). Weather forecasting using machine learning algorithm. In 2019 International Conference on Signal Processing and Communication (ICSC) (pp. 171-174). IEEE.
  • [5] Yousefi, H., Su, H. M., Imani, S. M., Alkhaldi, K., M. Filipe, C. D., & Didar, T. F. (2019). Intelligent food packaging: A review of smart sensing technologies for monitoring food quality. ACS sensors, 4(4), 808-821.
  • [6] Ayala‐Zavala, J. F., Del‐Toro‐Sánchez, L., Alvarez‐Parrilla, E., & González‐Aguilar, G. A. (2008). High relative humidity in‐package of fresh‐cut fruits and vegetables: advantage or disadvantage considering microbiological problems and antimicrobial delivering systems?. Journal of Food Science, 73(4), R41-R47.
  • [7] Wang, X., Xu, W., Tavakkoli, H., & Lee, Y. K. (2020, September). Low-Cost parylene based micro humidity sensor for integrated human thermal comfort sensing. In 2020 IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (NEMS) (pp. 134-138). IEEE.
  • [8] Duan, Z., Jiang, Y., & Tai, H. (2021). Recent advances in humidity sensor for human body related humidity detections. Journal of Materials Chemistry C.
  • [9] Lakhiar, I. A., Jianmin, G., Syed, T. N., Chandio, F. A., Buttar, N. A., & Qureshi, W. A. (2018). Monitoring and control systems in agriculture using intelligent sensor techniques: A review of the aeroponic system. Journal of Sensors, 2018.
  • [10] Zrelli, A., & Ezzedine, T. (2018). Design of optical and wireless sensors for underground mining monitoring system. optik, 170, 376-383. Chappanda et al., 2018
  • [11] Chappanda, K. N., Shekhah, O., Yassine, O., Patole, S. P., Eddaoudi, M., & Salama, K. N. (2018). The quest for highly sensitive QCM humidity sensors: The coating of CNT/MOF composite sensing films as case study. Sensors and Actuators B: Chemical, 257, 609-619.
  • [12] Torad, N. L., Zhang, S., Amer, W. A., Ayad, M. M., Kim, M., Kim, J., ... & Yamauchi, Y. (2019). Advanced nanoporous material–based QCM devices: A new horizon of interfacial mass sensing technology. Advanced Materials Interfaces, 6(20), 1900849.
  • [13] Sauerbrey, G. J. Z. P. (1959). The use of quartz oscillators for weighing thin layers and for microweighing. Z. Phys., 155, 206-222.
  • [14] Favrat, O., Gavoille, J., Aleya, L., & Monteil, G. (2013). Real time study of detergent concentration influence on solid fatty acid film removal processes. Journal of Surfactants and Detergents, 16(2), 213-219.
  • [15] Susilo, D., & Mujiono, T. (2019, August). QCM Coating With rGO Material as a Platform Developing Piezoelectric Biosensor. In 2019 International Seminar on Intelligent Technology and Its Applications (ISITIA) (pp. 52-55). IEEE.
  • [16] Li, R., Fan, Y., Ma, Z., Zhang, D., Liu, Y., & Xu, J. (2021). Controllable preparation of ultrathin MXene nanosheets and their excellent QCM humidity sensing properties enhanced by fluoride doping. Microchimica Acta, 188(3), 1-11.
  • [17] Kosuru, L., Bouchaala, A., Jaber, N., & Younis, M. I. (2016). Humidity detection using metal organic framework coated on QCM. Journal of Sensors, 2016.
  • [18] Wang, L., Gao, J., & Xu, J. (2019). QCM formaldehyde sensing materials: Design and sensing mechanism. Sensors and Actuators B: Chemical, 293, 71-82.
  • [19] Fauzi, F., Rianjanu, A., Santoso, I., & Triyana, K. (2021). Gas and humidity sensing with quartz crystal microbalance (QCM) coated with graphene-based materials–A mini review. Sensors and Actuators A: Physical, 112837.
  • [20] Jaruwongrungsee, K., Tuantranont, A., Wanna, Y., Wisitsoraat, A., & Lomas, T. (2007, August). Quartz crystal microbalance humidity sensor using electrospun PANI micro/nano dots. In 2007 7th IEEE Conference on Nanotechnology (IEEE NANO) (pp. 316-319). IEEE.
  • [21] Yakuphanoglu, F. (2012). Semiconducting and quartz microbalance (QCM) humidity sensor properties of TiO2 by sol gel calcination method. Solid state sciences, 14(6), 673-676.
  • [22] Zhang, D., Song, X., Wang, Z., & Chen, H. (2021). Ultra-highly sensitive humidity sensing by polydopamine/graphene oxide nanostructure on quartz crystal microbalance. Applied Surface Science, 538, 147816.
  • [23] Tai, H., Zhen, Y., Liu, C., Ye, Z., Xie, G., Du, X., & Jiang, Y. (2016). Facile development of high performance QCM humidity sensor based on protonated polyethylenimine-graphene oxide nanocomposite thin film. Sensors and Actuators B: Chemical, 230, 501-509.
  • [24] Qi, P., Zhang, T., Shao, J., Yang, B., Fei, T., & Wang, R. (2019). A QCM humidity sensor constructed by graphene quantum dots and chitosan composites. Sensors and Actuators A: Physical, 287, 93-101.
  • [25] Hussain, M., Kotova, K., & Lieberzeit, P. A. (2016). Molecularly imprinted polymer nanoparticles for formaldehyde sensing with QCM. Sensors, 16(7), 1011.
  • [26] Shukla, S. K., Kushwaha, C. S., Shukla, A., & Dubey, G. C. (2018). Integrated approach for efficient humidity sensing over zinc oxide and polypyrole composite. Materials Science and Engineering: C, 90, 325-332.
  • [27] Wang, X., Xie, S., Liu, J., Kucheyev, S. O., & Wang, Y. M. (2013). Focused-ion-beam assisted growth, patterning, and narrowing the size distributions of ZnO nanowires for variable optical properties and enhanced nonmechanical energy conversion. Chemistry of Materials, 25(14), 2819-2827.
  • [28] Cha, X., Yu, F., Fan, Y., Chen, J., Wang, L., Xiang, Q., ... & Xu, J. (2018). Superhydrophilic ZnO nanoneedle array: Controllable in situ growth on QCM transducer and enhanced humidity sensing properties and mechanism. Sensors and Actuators B: Chemical, 263, 436-444.
  • [29] Ren, X., Zhang, D., Wang, D., Li, Z., & Liu, S. (2018). Quartz crystal microbalance sensor for humidity sensing based on layer-by-layer self-assembled PDDAC/graphene oxide film. IEEE Sensors Journal, 18(23), 9471-9476.
  • [30] Zhao, Q., Yuan, Z., Duan, Z., Jiang, Y., Li, X., Li, Z., & Tai, H. (2019). An ingenious strategy for improving humidity sensing properties of multi-walled carbon nanotubes via poly-L-lysine modification. Sensors and Actuators B: Chemical, 289, 182-185.
  • [31] Yao, Y., Zhang, H., Sun, J., Ma, W., Li, L., Li, W., & Du, J. (2017). Novel QCM humidity sensors using stacked black phosphorus nanosheets as sensing film. Sensors and Actuators B: Chemical, 244, 259-264.
  • [32] Qi, P., Zhao, C., Wang, R., Fei, T., & Zhang, T. (2018). High-performance QCM humidity sensors using acidized-multiwalled carbon nanotubes as sensing film. IEEE Sensors Journal, 18(13), 5278-5283.
  • [33] Gao, N., Li, H. Y., Zhang, W., Zhang, Y., Zeng, Y., Zhixiang, H., ... & Liu, H. (2019). QCM-based humidity sensor and sensing properties employing colloidal SnO2 nanowires. Sensors and Actuators B: Chemical, 293, 129-135.
  • [34] Horzum, N., Taşçıoglu, D., Okur, S., & Demir, M. M. (2011). Humidity sensing properties of ZnO-based fibers by electrospinning. Talanta, 85(2), 1105-1111.
  • [35] Dai, J., Zhao, H., Lin, X., Liu, S., Fei, T., & Zhang, T. (2020). Design strategy for ultrafast-response humidity sensors based on gel polymer electrolytes and application for detecting respiration. Sensors and Actuators B: Chemical, 304, 127270.
  • [36] Dai, J., Zhang, T., Zhao, H., & Fei, T. (2017). Preparation of organic-inorganic hybrid polymers and their humidity sensing properties. Sensors and Actuators B: Chemical, 242, 1108-1114.
  • [37] Yao, Y., & Xue, Y. (2015). Impedance analysis of quartz crystal microbalance humidity sensors based on nanodiamond/graphene oxide nanocomposite film. Sensors and Actuators B: Chemical, 211, 52-58.
  • [38] Yao, Y., Huang, X. H., Zhang, B. Y., Zhang, Z., Hou, D., & Zhou, Z. K. (2020). Facile fabrication of high sensitivity cellulose nanocrystals based QCM humidity sensors with asymmetric electrode structure. Sensors and Actuators B: Chemical, 302, 127192.
  • [39] Velumani, M., Meher, S. R., & Alex, Z. C. (2019). Composite metal oxide thin film based impedometric humidity sensors. Sensors and actuators B: Chemical, 301, 127084.
  • [40] Na Songkhla, S., & Nakamoto, T. (2021). Overview of quartz crystal microbalance behavior analysis and measurement. Chemosensors, 9(12), 350.
  • [41] Qian, J., Tan, R., Feng, M., Shen, W., Lv, D., & Song, W. (2024). Humidity Sensing Using Polymers: A Critical Review of Current Technologies and Emerging Trends. Chemosensors, 12(11), 230.
  • [42] Han, W., Wu, Z., Li, Y., & Wang, Y. (2019). Graphene family nanomaterials (GFNs)—promising materials for antimicrobial coating and film: A review. Chemical Engineering Journal, 358, 1022-1037.
  • [43] Seifi, T., & Kamali, A. R. (2021). Anti-pathogenic activity of graphene nanomaterials: A review. Colloids and Surfaces B: Biointerfaces, 199, 111509.
  • [44] Mehmood, A., Mubarak, N. M., Khalid, M., Walvekar, R., Abdullah, E. C., Siddiqui, M. T. H., ... & Mazari, S. (2020). Graphene based nanomaterials for strain sensor application—a review. Journal of Environmental Chemical Engineering, 8(3), 103743.
  • [45] Tahriri, M., Del Monico, M., Moghanian, A., Yaraki, M. T., Torres, R., Yadegari, A., & Tayebi, L. (2019). Graphene and its derivatives: Opportunities and challenges in dentistry. Materials Science and Engineering: C, 102, 171-185.
  • [46] Dideikin, A. T., & Vul', A. Y. (2019). Graphene oxide and derivatives: the place in graphene family. Frontiers in Physics, 6, 149.
  • [47] Yu, W., Sisi, L., Haiyan, Y., & Jie, L. (2020). Progress in the functional modification of graphene/graphene oxide: A review. RSC Advances, 10(26), 15328-15345.
  • [48] Singh, D. P., Herrera, C. E., Singh, B., Singh, S., Singh, R. K., & Kumar, R. (2018). Graphene oxide: An efficient material and recent approach for biotechnological and biomedical applications. Materials Science and Engineering: C, 86, 173-197.
  • [49] Kumar, P., Singh, G., Bahadur, R., Li, Z., Zhang, X., Sathish, C. I., ... & Vinu, A. (2024). The rise of borophene. Progress in Materials Science, 101331.
  • [50] Mao, T., Wang, S., Yong, Z., Wang, X., Wang, X., Chen, H., ... & Wang, Z. (2021). High-stable, outstanding heat resistance ionogel electrolyte and the poly (3, 4-ethylenedioxythiophene) electrodes with excellent long-term stability for all-solid-state supercapacitor. Chemical Engineering Journal, 417, 129269.
  • [51] Chaudhary, V., Sonu, S., Taha, B. A., Raizada, P., Rustagi, S., Chahal, S., ... & Nguyen, V. H. (2024). Borophene-based nanomaterials: Promising candidates for next-generation gas/vapor chemiresistors. Journal of Materials Science & Technology.
  • [52] Ou, M., Wang, X., Yu, L., Liu, C., Tao, W., Ji, X., & Mei, L. (2021). The emergence and evolution of borophene. Advanced Science, 8(12), 2001801.
  • [53] Gutiérrez, J., Robein, Y. N., Juan, J., Di Nezio, M. S., Pistonesi, C., González, E. A., ... & Pistonesi, M. F. (2024). A combined experimental and DFT study on the zero valent iron/reduced graphene oxide doped QCM sensor for determination of trace concentrations of As using a Flow-batch system. Sensors and Actuators B: Chemical, 404, 135233.
  • [54] Chen, H., Zhang, D., Pan, Q., & Song, X. (2020). Highly sensitive QCM humidity sensor based on MOFs-derived SnO2/chitosan hybrid film. IEEE Sensors Journal, 21(4), 4385-4390.
  • [55] Wang, S., Xie, G., Su, Y., Su, L., Zhang, Q., Du, H., ... & Jiang, Y. (2018). Reduced graphene oxide-polyethylene oxide composite films for humidity sensing via quartz crystal microbalance. Sensors and Actuators B: Chemical, 255, 2203-2210.
  • [56] Lee, S. W., Choi, B. I., Kim, J. C., Woo, S. B., Kim, Y. G., Yoo, J., & Seo, Y. S. (2019). Reduction and compensation of humidity measurement errors at cold temperatures using dual QCM humidity sensors based on graphene oxides. Sensors and Actuators B: Chemical, 284, 386-394.
  • [57] Zhang, D., Wang, D., Li, P., Zhou, X., Zong, X., & Dong, G. (2018). Facile fabrication of high-performance QCM humidity sensor based on layer-by-layer self-assembled polyaniline/graphene oxide nanocomposite film. Sensors and Actuators B: Chemical, 255, 1869-1877.
  • [58] Borini, S., White, R., Wei, D., Astley, M., Haque, S., Spigone, E., ... & Ryhanen, T. (2013). Ultrafast graphene oxide humidity sensors. ACS nano, 7(12), 11166-11173.
  • [59] Yuan, Z., Tai, H., Bao, X., Liu, C., Ye, Z., & Jiang, Y. (2016a). Enhanced humidity-sensing properties of novel graphene oxide/zinc oxide nanoparticles layered thin film QCM sensor. Materials Letters, 174, 28-31.
  • [60] Fang, H., Lin, J., Hu, Z., Liu, H., Tang, Z., Shi, T., & Liao, G. (2020). Cu(OH)2 nanowires/graphene oxide composites based QCM humidity sensor with fast-response for real-time respiration monitoring. Sensors and Actuators B: Chemical, 304, 127313.
  • [61] Tang, K., Chen, X., Ding, X., Yu, X., & Yu, X. (2021). MoS2/Graphene Oxide/C60-OH Nanostructures Deposited on a Quartz Crystal Microbalance Transducer for Humidity Sensing. ACS Applied Nano Materials, 4(10), 10810-10818.
  • [62] Yuan, Z., Tai, H., Ye, Z., Liu, C., Xie, G., Du, X., & Jiang, Y. (2016). Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly (ethyleneimine) layered film. Sensors and Actuators B: Chemical, 234, 145-154.
  • [63] Chen, X., Chen, X., Li, N., Ding, X., & Zhao, X. (2016). A QCM humidity sensors based on GO/Nafion composite films with enhanced sensitivity. IEEE Sensors Journal, 16(24), 8874-8883.
  • [64] Ding, X., Chen, X., Chen, X., Zhao, X., & Li, N. (2018). A QCM humidity sensor based on fullerene/graphene oxide nanocomposites with high quality factor. Sensors and Actuators B: Chemical, 266, 534-542.
  • [65] Yao, Y., Chen, X., Li, X., Chen, X., & Li, N. (2014). Investigation of the stability of QCM humidity sensor using graphene oxide as sensing films. Sensors and Actuators B: Chemical, 191, 779-783.
  • [66] Zhu, Y., Chen, J., Li, H., Zhu, Y., & Xu, J. (2014). Synthesis of mesoporous SnO2–SiO2 composites and their application as quartz crystal microbalance humidity sensor. Sensors and Actuators B: Chemical, 193, 320-325.
  • [67] Kumar, R., & Yadav, B. C. (2016). Fabrication of polyaniline (PANI)—tungsten oxide (WO3) composite for humidity sensing application. Journal of Inorganic and Organometallic Polymers and Materials, 26(6), 1421-1427.
  • [68] Jia, Y., Chen, L., Yu, H., Zhang, Y., & Dong, F. (2015). Graphene oxide/polystyrene composite nanofibers on quartz crystal microbalance electrode for the ammonia detection. RSC Advances, 5(51), 40620-40627.
  • [69] Ionita, M., Crica, L. E., Vasile, E., Dinescu, S., Pandele, M. A., Costache, M., ... & Iovu, H. (2016). Effect of carboxylic acid functionalized graphene on physical-chemical and biological performances of polysulfone porous films. Polymer, 92, 1-12.
  • [70] Ding, X., Li, J., Hu, W., Chen, X., & Xia, W. (2024). An ultra-sensitive QCM Humidity Sensor Based on GO/OH-GQDs. IEEE Sensors Journal.
  • [71] Cabrini, A., Fisher, S. G., Iverson, E. T., Cerruti, P., De Nardo, L., Gentile, G., ... & Grunlan, J. C. (2025). High gas barrier of clay/graphene oxide/chitosan multilayer nanocoatings at high humidity. Progress in Organic Coatings, 198, 108929.
  • [72] Wang, L., Gao, J., & Xu, J. (2019). QCM formaldehyde sensing materials: Design and sensing mechanism. Sensors and Actuators B: Chemical, 293, 71-82.
  • [73] Hou, C., Tai, G., Liu, Y., & Liu, X. (2022). Borophene gas sensor. Nano Research, 1-8.
  • [74] Khan, M. I., Aziz, S. H., Majid, A., & Rizwan, M. (2021). Computational study of borophene/boron nitride (B/BN) interface as a promising gas sensor for industrial affiliated gasses. Physica E: Low-dimensional Systems and Nanostructures, 130, 114692.
  • [75] Shen, J., Yang, Z., Wang, Y., Xu, L. C., Liu, R., & Liu, X. (2020). The gas sensing performance of borophene/MoS2 heterostructure. Applied Surface Science, 504, 144412.
  • [76] Hou, C., Tai, G. A., Liu, B., Wu, Z., & Yin, Y. (2021). Borophene-graphene heterostructure: Preparation and ultrasensitive humidity sensing. Nano Research, 14(7), 2337-2344.
  • [77] Hou, C., Tai, G., Liu, Y., Wu, Z., Wu, Z., & Liang, X. (2021). Ultrasensitive humidity sensing and the multifunctional applications of borophene–MoS 2 heterostructures. Journal of Materials Chemistry A, 9(22), 13100-13108.

Grafen, GO ve Borofen: QCM Tabanlı Nem Sensörlerinde Artırılmış Hassasiyet için Yaklaşımlar

Year 2024, Volume: 9 Issue: 2, 135 - 149, 29.12.2024
https://doi.org/10.56171/ojn.1598824

Abstract

Ortam neminin belirlenmesi, insan konforu, sağlığı, güvenliği ve ürün kalitesini doğrudan etkilediği için günlük yaşamda büyük bir öneme sahiptir. Hızlı yanıt süreleri ve yüksek hassasiyetleri ile bilinen Quartz Kristal Mikroteraziler (QCM), nem algılama konusunda yüksek doğrulukla doğrusal ölçümler sağlayabilme yetenekleri sayesinde önemli bir avantaj sunar. Bu sensörler, gerçek zamanlı, hassas nem tespiti yapabilmeleri ve minimum kalibrasyon gerektirmeleri nedeniyle özellikle değerlidir, bu da onları çeşitli uygulamalar için ideal kılar. Bu mini derleme, QCM sensörlerinin önemini vurgulamakta olup, kompozit matrislere entegre edilmiş katkı malzemelerinden karbon ve bor bazlı nanomalzemelerden hazırlanan algılama katmanlarına odaklanmaktadır. Derlemede, grafen, grafen oksit (GO) ve borofen tabanlı malzemelere ağırlık verilecektir. Bu malzemeler, karbon ve borun benzersiz özellikleri ve iki boyutlu allotrop yapıları sayesinde mükemmel nem algılama yetenekleri sunar. Bu derleme, nem ölçüm ilkeleri ve QCM sensör özellikleri hakkında kısa bir genel bakışla başlamakta, ardından QCM algılama katmanlarını hazırlamak için kullanılan çeşitli malzemeleri incelemekte ve bu malzemelerin nem sensörü uygulamalarındaki avantajlarını ve dezavantajlarını tartışmaktadır. Son olarak, derleme, katmanlar arası kendiliğinden montaj edilen iletken polimerik filmler, yenilikçi GO tabanlı kompozit QCM nem sensörleri ve borofen tabanlı nem sensörlerinin geliştirilmesine yönelik gelecekteki perspektifleri sunarak, bunların çok fonksiyonlu kompozitler için potansiyelini ortaya koymaktadır.

Project Number

MGA-2018-41405 ve MYL-2022-43799

References

  • [1] Yao, Y., Huang, X., Chen, Q., Zhang, Z., & Ling, W. (2020). High sensitivity and high stability QCM humidity sensors based on polydopamine coated cellulose nanocrystals/graphene oxide nanocomposite. Nanomaterials, 10(11), 2210.
  • [2] Chen, W., Chen, B., Lv, R., Wu, M., Zhou, J., Lu, B., ... & Tang, L. (2021). Fabrication of quartz crystal microbalance humidity sensors based on super-hydrophilic cellulose nanocrystals. Cellulose, 28(6), 3409-3421.
  • [3] Buxton, P. A., & Mellanby, K. (1934). The measurement and control of humidity. Bulletin of Entomological Research, 25(2), 171-175.
  • [4] Singh, N., Chaturvedi, S., & Akhter, S. (2019, March). Weather forecasting using machine learning algorithm. In 2019 International Conference on Signal Processing and Communication (ICSC) (pp. 171-174). IEEE.
  • [5] Yousefi, H., Su, H. M., Imani, S. M., Alkhaldi, K., M. Filipe, C. D., & Didar, T. F. (2019). Intelligent food packaging: A review of smart sensing technologies for monitoring food quality. ACS sensors, 4(4), 808-821.
  • [6] Ayala‐Zavala, J. F., Del‐Toro‐Sánchez, L., Alvarez‐Parrilla, E., & González‐Aguilar, G. A. (2008). High relative humidity in‐package of fresh‐cut fruits and vegetables: advantage or disadvantage considering microbiological problems and antimicrobial delivering systems?. Journal of Food Science, 73(4), R41-R47.
  • [7] Wang, X., Xu, W., Tavakkoli, H., & Lee, Y. K. (2020, September). Low-Cost parylene based micro humidity sensor for integrated human thermal comfort sensing. In 2020 IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (NEMS) (pp. 134-138). IEEE.
  • [8] Duan, Z., Jiang, Y., & Tai, H. (2021). Recent advances in humidity sensor for human body related humidity detections. Journal of Materials Chemistry C.
  • [9] Lakhiar, I. A., Jianmin, G., Syed, T. N., Chandio, F. A., Buttar, N. A., & Qureshi, W. A. (2018). Monitoring and control systems in agriculture using intelligent sensor techniques: A review of the aeroponic system. Journal of Sensors, 2018.
  • [10] Zrelli, A., & Ezzedine, T. (2018). Design of optical and wireless sensors for underground mining monitoring system. optik, 170, 376-383. Chappanda et al., 2018
  • [11] Chappanda, K. N., Shekhah, O., Yassine, O., Patole, S. P., Eddaoudi, M., & Salama, K. N. (2018). The quest for highly sensitive QCM humidity sensors: The coating of CNT/MOF composite sensing films as case study. Sensors and Actuators B: Chemical, 257, 609-619.
  • [12] Torad, N. L., Zhang, S., Amer, W. A., Ayad, M. M., Kim, M., Kim, J., ... & Yamauchi, Y. (2019). Advanced nanoporous material–based QCM devices: A new horizon of interfacial mass sensing technology. Advanced Materials Interfaces, 6(20), 1900849.
  • [13] Sauerbrey, G. J. Z. P. (1959). The use of quartz oscillators for weighing thin layers and for microweighing. Z. Phys., 155, 206-222.
  • [14] Favrat, O., Gavoille, J., Aleya, L., & Monteil, G. (2013). Real time study of detergent concentration influence on solid fatty acid film removal processes. Journal of Surfactants and Detergents, 16(2), 213-219.
  • [15] Susilo, D., & Mujiono, T. (2019, August). QCM Coating With rGO Material as a Platform Developing Piezoelectric Biosensor. In 2019 International Seminar on Intelligent Technology and Its Applications (ISITIA) (pp. 52-55). IEEE.
  • [16] Li, R., Fan, Y., Ma, Z., Zhang, D., Liu, Y., & Xu, J. (2021). Controllable preparation of ultrathin MXene nanosheets and their excellent QCM humidity sensing properties enhanced by fluoride doping. Microchimica Acta, 188(3), 1-11.
  • [17] Kosuru, L., Bouchaala, A., Jaber, N., & Younis, M. I. (2016). Humidity detection using metal organic framework coated on QCM. Journal of Sensors, 2016.
  • [18] Wang, L., Gao, J., & Xu, J. (2019). QCM formaldehyde sensing materials: Design and sensing mechanism. Sensors and Actuators B: Chemical, 293, 71-82.
  • [19] Fauzi, F., Rianjanu, A., Santoso, I., & Triyana, K. (2021). Gas and humidity sensing with quartz crystal microbalance (QCM) coated with graphene-based materials–A mini review. Sensors and Actuators A: Physical, 112837.
  • [20] Jaruwongrungsee, K., Tuantranont, A., Wanna, Y., Wisitsoraat, A., & Lomas, T. (2007, August). Quartz crystal microbalance humidity sensor using electrospun PANI micro/nano dots. In 2007 7th IEEE Conference on Nanotechnology (IEEE NANO) (pp. 316-319). IEEE.
  • [21] Yakuphanoglu, F. (2012). Semiconducting and quartz microbalance (QCM) humidity sensor properties of TiO2 by sol gel calcination method. Solid state sciences, 14(6), 673-676.
  • [22] Zhang, D., Song, X., Wang, Z., & Chen, H. (2021). Ultra-highly sensitive humidity sensing by polydopamine/graphene oxide nanostructure on quartz crystal microbalance. Applied Surface Science, 538, 147816.
  • [23] Tai, H., Zhen, Y., Liu, C., Ye, Z., Xie, G., Du, X., & Jiang, Y. (2016). Facile development of high performance QCM humidity sensor based on protonated polyethylenimine-graphene oxide nanocomposite thin film. Sensors and Actuators B: Chemical, 230, 501-509.
  • [24] Qi, P., Zhang, T., Shao, J., Yang, B., Fei, T., & Wang, R. (2019). A QCM humidity sensor constructed by graphene quantum dots and chitosan composites. Sensors and Actuators A: Physical, 287, 93-101.
  • [25] Hussain, M., Kotova, K., & Lieberzeit, P. A. (2016). Molecularly imprinted polymer nanoparticles for formaldehyde sensing with QCM. Sensors, 16(7), 1011.
  • [26] Shukla, S. K., Kushwaha, C. S., Shukla, A., & Dubey, G. C. (2018). Integrated approach for efficient humidity sensing over zinc oxide and polypyrole composite. Materials Science and Engineering: C, 90, 325-332.
  • [27] Wang, X., Xie, S., Liu, J., Kucheyev, S. O., & Wang, Y. M. (2013). Focused-ion-beam assisted growth, patterning, and narrowing the size distributions of ZnO nanowires for variable optical properties and enhanced nonmechanical energy conversion. Chemistry of Materials, 25(14), 2819-2827.
  • [28] Cha, X., Yu, F., Fan, Y., Chen, J., Wang, L., Xiang, Q., ... & Xu, J. (2018). Superhydrophilic ZnO nanoneedle array: Controllable in situ growth on QCM transducer and enhanced humidity sensing properties and mechanism. Sensors and Actuators B: Chemical, 263, 436-444.
  • [29] Ren, X., Zhang, D., Wang, D., Li, Z., & Liu, S. (2018). Quartz crystal microbalance sensor for humidity sensing based on layer-by-layer self-assembled PDDAC/graphene oxide film. IEEE Sensors Journal, 18(23), 9471-9476.
  • [30] Zhao, Q., Yuan, Z., Duan, Z., Jiang, Y., Li, X., Li, Z., & Tai, H. (2019). An ingenious strategy for improving humidity sensing properties of multi-walled carbon nanotubes via poly-L-lysine modification. Sensors and Actuators B: Chemical, 289, 182-185.
  • [31] Yao, Y., Zhang, H., Sun, J., Ma, W., Li, L., Li, W., & Du, J. (2017). Novel QCM humidity sensors using stacked black phosphorus nanosheets as sensing film. Sensors and Actuators B: Chemical, 244, 259-264.
  • [32] Qi, P., Zhao, C., Wang, R., Fei, T., & Zhang, T. (2018). High-performance QCM humidity sensors using acidized-multiwalled carbon nanotubes as sensing film. IEEE Sensors Journal, 18(13), 5278-5283.
  • [33] Gao, N., Li, H. Y., Zhang, W., Zhang, Y., Zeng, Y., Zhixiang, H., ... & Liu, H. (2019). QCM-based humidity sensor and sensing properties employing colloidal SnO2 nanowires. Sensors and Actuators B: Chemical, 293, 129-135.
  • [34] Horzum, N., Taşçıoglu, D., Okur, S., & Demir, M. M. (2011). Humidity sensing properties of ZnO-based fibers by electrospinning. Talanta, 85(2), 1105-1111.
  • [35] Dai, J., Zhao, H., Lin, X., Liu, S., Fei, T., & Zhang, T. (2020). Design strategy for ultrafast-response humidity sensors based on gel polymer electrolytes and application for detecting respiration. Sensors and Actuators B: Chemical, 304, 127270.
  • [36] Dai, J., Zhang, T., Zhao, H., & Fei, T. (2017). Preparation of organic-inorganic hybrid polymers and their humidity sensing properties. Sensors and Actuators B: Chemical, 242, 1108-1114.
  • [37] Yao, Y., & Xue, Y. (2015). Impedance analysis of quartz crystal microbalance humidity sensors based on nanodiamond/graphene oxide nanocomposite film. Sensors and Actuators B: Chemical, 211, 52-58.
  • [38] Yao, Y., Huang, X. H., Zhang, B. Y., Zhang, Z., Hou, D., & Zhou, Z. K. (2020). Facile fabrication of high sensitivity cellulose nanocrystals based QCM humidity sensors with asymmetric electrode structure. Sensors and Actuators B: Chemical, 302, 127192.
  • [39] Velumani, M., Meher, S. R., & Alex, Z. C. (2019). Composite metal oxide thin film based impedometric humidity sensors. Sensors and actuators B: Chemical, 301, 127084.
  • [40] Na Songkhla, S., & Nakamoto, T. (2021). Overview of quartz crystal microbalance behavior analysis and measurement. Chemosensors, 9(12), 350.
  • [41] Qian, J., Tan, R., Feng, M., Shen, W., Lv, D., & Song, W. (2024). Humidity Sensing Using Polymers: A Critical Review of Current Technologies and Emerging Trends. Chemosensors, 12(11), 230.
  • [42] Han, W., Wu, Z., Li, Y., & Wang, Y. (2019). Graphene family nanomaterials (GFNs)—promising materials for antimicrobial coating and film: A review. Chemical Engineering Journal, 358, 1022-1037.
  • [43] Seifi, T., & Kamali, A. R. (2021). Anti-pathogenic activity of graphene nanomaterials: A review. Colloids and Surfaces B: Biointerfaces, 199, 111509.
  • [44] Mehmood, A., Mubarak, N. M., Khalid, M., Walvekar, R., Abdullah, E. C., Siddiqui, M. T. H., ... & Mazari, S. (2020). Graphene based nanomaterials for strain sensor application—a review. Journal of Environmental Chemical Engineering, 8(3), 103743.
  • [45] Tahriri, M., Del Monico, M., Moghanian, A., Yaraki, M. T., Torres, R., Yadegari, A., & Tayebi, L. (2019). Graphene and its derivatives: Opportunities and challenges in dentistry. Materials Science and Engineering: C, 102, 171-185.
  • [46] Dideikin, A. T., & Vul', A. Y. (2019). Graphene oxide and derivatives: the place in graphene family. Frontiers in Physics, 6, 149.
  • [47] Yu, W., Sisi, L., Haiyan, Y., & Jie, L. (2020). Progress in the functional modification of graphene/graphene oxide: A review. RSC Advances, 10(26), 15328-15345.
  • [48] Singh, D. P., Herrera, C. E., Singh, B., Singh, S., Singh, R. K., & Kumar, R. (2018). Graphene oxide: An efficient material and recent approach for biotechnological and biomedical applications. Materials Science and Engineering: C, 86, 173-197.
  • [49] Kumar, P., Singh, G., Bahadur, R., Li, Z., Zhang, X., Sathish, C. I., ... & Vinu, A. (2024). The rise of borophene. Progress in Materials Science, 101331.
  • [50] Mao, T., Wang, S., Yong, Z., Wang, X., Wang, X., Chen, H., ... & Wang, Z. (2021). High-stable, outstanding heat resistance ionogel electrolyte and the poly (3, 4-ethylenedioxythiophene) electrodes with excellent long-term stability for all-solid-state supercapacitor. Chemical Engineering Journal, 417, 129269.
  • [51] Chaudhary, V., Sonu, S., Taha, B. A., Raizada, P., Rustagi, S., Chahal, S., ... & Nguyen, V. H. (2024). Borophene-based nanomaterials: Promising candidates for next-generation gas/vapor chemiresistors. Journal of Materials Science & Technology.
  • [52] Ou, M., Wang, X., Yu, L., Liu, C., Tao, W., Ji, X., & Mei, L. (2021). The emergence and evolution of borophene. Advanced Science, 8(12), 2001801.
  • [53] Gutiérrez, J., Robein, Y. N., Juan, J., Di Nezio, M. S., Pistonesi, C., González, E. A., ... & Pistonesi, M. F. (2024). A combined experimental and DFT study on the zero valent iron/reduced graphene oxide doped QCM sensor for determination of trace concentrations of As using a Flow-batch system. Sensors and Actuators B: Chemical, 404, 135233.
  • [54] Chen, H., Zhang, D., Pan, Q., & Song, X. (2020). Highly sensitive QCM humidity sensor based on MOFs-derived SnO2/chitosan hybrid film. IEEE Sensors Journal, 21(4), 4385-4390.
  • [55] Wang, S., Xie, G., Su, Y., Su, L., Zhang, Q., Du, H., ... & Jiang, Y. (2018). Reduced graphene oxide-polyethylene oxide composite films for humidity sensing via quartz crystal microbalance. Sensors and Actuators B: Chemical, 255, 2203-2210.
  • [56] Lee, S. W., Choi, B. I., Kim, J. C., Woo, S. B., Kim, Y. G., Yoo, J., & Seo, Y. S. (2019). Reduction and compensation of humidity measurement errors at cold temperatures using dual QCM humidity sensors based on graphene oxides. Sensors and Actuators B: Chemical, 284, 386-394.
  • [57] Zhang, D., Wang, D., Li, P., Zhou, X., Zong, X., & Dong, G. (2018). Facile fabrication of high-performance QCM humidity sensor based on layer-by-layer self-assembled polyaniline/graphene oxide nanocomposite film. Sensors and Actuators B: Chemical, 255, 1869-1877.
  • [58] Borini, S., White, R., Wei, D., Astley, M., Haque, S., Spigone, E., ... & Ryhanen, T. (2013). Ultrafast graphene oxide humidity sensors. ACS nano, 7(12), 11166-11173.
  • [59] Yuan, Z., Tai, H., Bao, X., Liu, C., Ye, Z., & Jiang, Y. (2016a). Enhanced humidity-sensing properties of novel graphene oxide/zinc oxide nanoparticles layered thin film QCM sensor. Materials Letters, 174, 28-31.
  • [60] Fang, H., Lin, J., Hu, Z., Liu, H., Tang, Z., Shi, T., & Liao, G. (2020). Cu(OH)2 nanowires/graphene oxide composites based QCM humidity sensor with fast-response for real-time respiration monitoring. Sensors and Actuators B: Chemical, 304, 127313.
  • [61] Tang, K., Chen, X., Ding, X., Yu, X., & Yu, X. (2021). MoS2/Graphene Oxide/C60-OH Nanostructures Deposited on a Quartz Crystal Microbalance Transducer for Humidity Sensing. ACS Applied Nano Materials, 4(10), 10810-10818.
  • [62] Yuan, Z., Tai, H., Ye, Z., Liu, C., Xie, G., Du, X., & Jiang, Y. (2016). Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly (ethyleneimine) layered film. Sensors and Actuators B: Chemical, 234, 145-154.
  • [63] Chen, X., Chen, X., Li, N., Ding, X., & Zhao, X. (2016). A QCM humidity sensors based on GO/Nafion composite films with enhanced sensitivity. IEEE Sensors Journal, 16(24), 8874-8883.
  • [64] Ding, X., Chen, X., Chen, X., Zhao, X., & Li, N. (2018). A QCM humidity sensor based on fullerene/graphene oxide nanocomposites with high quality factor. Sensors and Actuators B: Chemical, 266, 534-542.
  • [65] Yao, Y., Chen, X., Li, X., Chen, X., & Li, N. (2014). Investigation of the stability of QCM humidity sensor using graphene oxide as sensing films. Sensors and Actuators B: Chemical, 191, 779-783.
  • [66] Zhu, Y., Chen, J., Li, H., Zhu, Y., & Xu, J. (2014). Synthesis of mesoporous SnO2–SiO2 composites and their application as quartz crystal microbalance humidity sensor. Sensors and Actuators B: Chemical, 193, 320-325.
  • [67] Kumar, R., & Yadav, B. C. (2016). Fabrication of polyaniline (PANI)—tungsten oxide (WO3) composite for humidity sensing application. Journal of Inorganic and Organometallic Polymers and Materials, 26(6), 1421-1427.
  • [68] Jia, Y., Chen, L., Yu, H., Zhang, Y., & Dong, F. (2015). Graphene oxide/polystyrene composite nanofibers on quartz crystal microbalance electrode for the ammonia detection. RSC Advances, 5(51), 40620-40627.
  • [69] Ionita, M., Crica, L. E., Vasile, E., Dinescu, S., Pandele, M. A., Costache, M., ... & Iovu, H. (2016). Effect of carboxylic acid functionalized graphene on physical-chemical and biological performances of polysulfone porous films. Polymer, 92, 1-12.
  • [70] Ding, X., Li, J., Hu, W., Chen, X., & Xia, W. (2024). An ultra-sensitive QCM Humidity Sensor Based on GO/OH-GQDs. IEEE Sensors Journal.
  • [71] Cabrini, A., Fisher, S. G., Iverson, E. T., Cerruti, P., De Nardo, L., Gentile, G., ... & Grunlan, J. C. (2025). High gas barrier of clay/graphene oxide/chitosan multilayer nanocoatings at high humidity. Progress in Organic Coatings, 198, 108929.
  • [72] Wang, L., Gao, J., & Xu, J. (2019). QCM formaldehyde sensing materials: Design and sensing mechanism. Sensors and Actuators B: Chemical, 293, 71-82.
  • [73] Hou, C., Tai, G., Liu, Y., & Liu, X. (2022). Borophene gas sensor. Nano Research, 1-8.
  • [74] Khan, M. I., Aziz, S. H., Majid, A., & Rizwan, M. (2021). Computational study of borophene/boron nitride (B/BN) interface as a promising gas sensor for industrial affiliated gasses. Physica E: Low-dimensional Systems and Nanostructures, 130, 114692.
  • [75] Shen, J., Yang, Z., Wang, Y., Xu, L. C., Liu, R., & Liu, X. (2020). The gas sensing performance of borophene/MoS2 heterostructure. Applied Surface Science, 504, 144412.
  • [76] Hou, C., Tai, G. A., Liu, B., Wu, Z., & Yin, Y. (2021). Borophene-graphene heterostructure: Preparation and ultrasensitive humidity sensing. Nano Research, 14(7), 2337-2344.
  • [77] Hou, C., Tai, G., Liu, Y., Wu, Z., Wu, Z., & Liang, X. (2021). Ultrasensitive humidity sensing and the multifunctional applications of borophene–MoS 2 heterostructures. Journal of Materials Chemistry A, 9(22), 13100-13108.
There are 77 citations in total.

Details

Primary Language English
Subjects Sensor Technology, Chemical Engineering (Other), Composite and Hybrid Materials, Materials Engineering (Other)
Journal Section Reviews
Authors

Zeynep Demirtaş 0009-0000-2935-3975

Mervenur Kirazoğlu 0000-0003-2551-0333

Birgül Benli 0000-0001-7386-5003

Project Number MGA-2018-41405 ve MYL-2022-43799
Publication Date December 29, 2024
Submission Date December 10, 2024
Acceptance Date December 29, 2024
Published in Issue Year 2024 Volume: 9 Issue: 2

Cite

APA Demirtaş, Z., Kirazoğlu, M., & Benli, B. (2024). Graphene, GO, and Borophene: Innovations in QCM-Based Humidity Sensors for Enhanced Sensitivity. Open Journal of Nano, 9(2), 135-149. https://doi.org/10.56171/ojn.1598824
AMA Demirtaş Z, Kirazoğlu M, Benli B. Graphene, GO, and Borophene: Innovations in QCM-Based Humidity Sensors for Enhanced Sensitivity. Open J. Nano. December 2024;9(2):135-149. doi:10.56171/ojn.1598824
Chicago Demirtaş, Zeynep, Mervenur Kirazoğlu, and Birgül Benli. “Graphene, GO, and Borophene: Innovations in QCM-Based Humidity Sensors for Enhanced Sensitivity”. Open Journal of Nano 9, no. 2 (December 2024): 135-49. https://doi.org/10.56171/ojn.1598824.
EndNote Demirtaş Z, Kirazoğlu M, Benli B (December 1, 2024) Graphene, GO, and Borophene: Innovations in QCM-Based Humidity Sensors for Enhanced Sensitivity. Open Journal of Nano 9 2 135–149.
IEEE Z. Demirtaş, M. Kirazoğlu, and B. Benli, “Graphene, GO, and Borophene: Innovations in QCM-Based Humidity Sensors for Enhanced Sensitivity”, Open J. Nano, vol. 9, no. 2, pp. 135–149, 2024, doi: 10.56171/ojn.1598824.
ISNAD Demirtaş, Zeynep et al. “Graphene, GO, and Borophene: Innovations in QCM-Based Humidity Sensors for Enhanced Sensitivity”. Open Journal of Nano 9/2 (December 2024), 135-149. https://doi.org/10.56171/ojn.1598824.
JAMA Demirtaş Z, Kirazoğlu M, Benli B. Graphene, GO, and Borophene: Innovations in QCM-Based Humidity Sensors for Enhanced Sensitivity. Open J. Nano. 2024;9:135–149.
MLA Demirtaş, Zeynep et al. “Graphene, GO, and Borophene: Innovations in QCM-Based Humidity Sensors for Enhanced Sensitivity”. Open Journal of Nano, vol. 9, no. 2, 2024, pp. 135-49, doi:10.56171/ojn.1598824.
Vancouver Demirtaş Z, Kirazoğlu M, Benli B. Graphene, GO, and Borophene: Innovations in QCM-Based Humidity Sensors for Enhanced Sensitivity. Open J. Nano. 2024;9(2):135-49.

23830

The Open Journal of Nano(OJN) deals with information related to (but not limited to) physical, chemical and biological phenomena and processes ranging from molecular to microscale structures.

All publications in The Open Journal of Nano are licensed under the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.