Research Article
BibTex RIS Cite

Kübik Perovskit LaZnO3 Bileşiğinin Yapısal, Elektronik, Elastik ve Termodinamik Özelliklerini Araştırmak için Ab Initio Hesaplamaları

Year 2022, Volume: 4 Issue: 2, 113 - 124, 30.12.2022
https://doi.org/10.54990/okufed.1215703

Abstract

Bu çalışmada, E21 fazındaki perovskit LaZnO3 bileşiğinin yapısal elastik, elektronik ve termodinamik özelliklerini incelemek ve derinlemesine anlamak için ab-initio hesaplamaları kullanılmıştır. Hesaplamalar, yoğunluk fonksiyonel teorisine (DFT) ve pseudopotansiyel yöntemine dayanan hesaplamalı yazılım paketi QUANTUM-ESPRESSO/PWSCF kullanılarak gerçekleştirilmiştir. Hesaplanan örgü parametresi (a0) önceki teorik çalışmalarla iyi bir uyum içindedir. Hesaplanan diğer parametreler, bulk modülü, anizotropi faktörü, Poisson oranı, elastik sabitler ve Young modülü gibi temel fiziksel özellikler elde edildi ve daha sonra teorik sonuçla karşılaştırıldı. Kübik perovskit LaZnO3 bileşiğinin elektronik bant profilini yorumlamak amacı için bant yapıları ve durumların yoğunluğu eğrileri sunulmuştur. Bileşiğin metalik doğası belirlenmiştir. Akabinde Debye sıcaklığı, erime sıcaklığı, iç enerji, titreşim enerjisi, entropi ve özgül ısı kapasitesi de 0–800 K sıcaklık aralığında değerlendirilmiştir.

References

  • Al S, (2019). Investigations of Physical Properties of XTiH3 and Implications for Solid State Hydrogen Storage. Zeitschrift für Naturforschung A,74(11), 1023-1030.
  • Al, S. (2021). Elastic and Thermodynamic Properties of Cubic Perovskite Type NdXO3 (X= Ga, In). The European Physical Journal B, 94(5), 1-9.
  • AL, Selgin & Arıkan, N. (2019). Elastic, Electronic and Vibrational Properties of Ir-Based Refractory Superalloys. Sakarya University Journal of Science, 23(4), 501-508.
  • Arikan, N., Ersen, M., Ocak, H. Y., İyigör, A., Candan, A., Uǧur, Ş., Varshney, D. (2013). Ab-initio Study of Phonon Dispersion and Elastic Properties of l1 2 Intermetallics Ti3Al and Y3Al. Modern Physics Letters B, 27(30), 1350224, 27-30.
  • Arıkan, N., İyigör, A., Candan, A., Özduran, M., Karakoç, A., Uğur, Ş., . Guechi, N. (2014). Abinitio Study of the Structural, Electronic, Elastic and Vibrational Properties of the Intermetallic Pd3V and Pt3V Alloys in the L12 Phase. Metals and Materials International, 20(4), 765-773.
  • Arıkan, N., Ocak, H. Y., Dikici Yıldız, G., Yıldız, Y. G., Ünal, R. (2020). Investigation of the Mechanical, Electronic and Phonon Properties of X2scal (X= Ir, Os, and Pt) Heusler Compounds. Journal of the Korean Physical Society, 76(10), 916-922.
  • Benzoudji, F., Abid, O. M., Seddik, T., Yakoubi, A., Khenata, R., Meradji, H., Ocak, H. Y. (2019). Insight into the Structural, Elastic, Electronic, Thermoelectric, Thermodynamic and Optical Properties of MRhSb (M= Ti, Zr, Hf) Half-Heuslers From Ab-initio Calculations. Chinese Journal of Physics, 59, 434-448.
  • Bougherara, K., Litimein, F., Khenata, R., Uçgun, E., Ocak, H. Y., Uğur, Ş., Omran, S. B. (2013). Structural, Elastic, Electronic and Optical Properties of Cu3TMSe4 (TM= V, Nb and Ta) Sulvanite Compounds Via First-Principles Calculations. Science of Advanced Materials, 5(1), 97-106.
  • Bretos, I., Jiménez, R., Pérez‐Mezcua, D., Salazar, N., Ricote, J., Calzada, M. L. (2015). Low‐Temperature Liquid Precursors of Crystalline Metal Oxides Assisted by Heterogeneous Photocatalysis. Advanced Materials, 27(16), 2608-2613.
  • Dal Corso, A. (2016). Elastic Constants of Beryllium: A First-Principles Investigation. Journal of Physics: Condensed Matter, 28(7), 075401.
  • Davidson, C. G. (1975). 14) IF f lag D 0 THEN. Journal of Computational Physics, 17, 87-94.
  • De Paoli, A., Barresi, A. A. (2001). Deep Oxidation Kinetics of Trieline Over LaFeO3 Perovskite Catalyst. Industrial & Engineering Chemistry Research, 40(6), 1460-1464.
  • Screiber, E., Anderson, O., Soga, N., (1973). Elastic Constants and Their Measurements. New York: McGrawHill.
  • Galasso, F.S. (1990). Perovskites and High Tc Superconductors. New York: Gordon and Breach.
  • Fine, M. E., Brown, L. D., Marcus, H. L. (1984). Elastic Constants Versus Melting Temperature in Metals. Scripta Metallurgica, 18(9), 951-956.
  • Frantsevich, I. N., (1982). Elastic Constants and Elastic Moduli of Metals and Insulators. Reference book.
  • Gao, P., Tian, X., Nie, Y., Yang, C., Zhou, Z., Wang, Y. (2019). Promoted Peroxymonosulfate Activation into Singlet Oxygen Over Perovskite for Ofloxacin Degradation By Controlling the Oxygen Defect Concentration. Chemical Engineering Journal, 359, 828-839.
  • Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Wentzcovitch, R. M. (2009). Quantum Espresso: A Modular and Open-Source Software Project for Quantum Simulations of Materials. Journal of Physics: Condensed Matter, 21(39), 395502.
  • Giannozzi, P., Baseggio, O., Bonfà, P., Brunato, D., Car, R., Carnimeo, I., Baroni, S. (2020). Quantum Espresso Toward the Exascale. The Journal of Chemical Physics, 152(15), 154105.
  • Haines, J., Leger, J. M., Bocquillon, G. (2001). Synthesis and Design of Superhard Materials. Annual Review of Materials Research, 31, 1.
  • Hao, Y. J., Chen, X. R., Cui, H. L., Bai, Y. L. (2006). First-Principles Calculations of Elastic Constants of c-BN. Physica B: Condensed Matter, 382(1-2), 118-122.
  • Hautier, G., Fischer, C., Ehrlacher, V., Jain, A., Ceder, G. (2011). Data Mined Ionic Substitutions for the Discovery of New Compounds. Inorganic Chemistry, 50(2), 656-663.
  • Hohenberg, P., Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864.
  • Ji, Q., Bi, L., Zhang, J., Cao, H., Zhao, X. S. (2020). The Role of Oxygen Vacancies of ABO3 Perovskite Oxides in the Oxygen Reduction Reaction. Energy & Environmental Science, 13(5), 1408-1428.
  • Kajitani, M., Matsuda, M., Hoshikawa, A., Harjo, S., Kamiyama, T., Ishigaki, T., Izumi, F., Miyake, M. (2005). In Situ Neutron Diffraction Study on Fast Oxide Ion Conductor LaGaO3-Based Perovskite Compounds. Chemistry of materials, 17(16), 4235-4243.
  • Kohn, W., Sham, L. J. (1965). Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 140(4A), A1133.
  • Li, C., Soh, K. C. K., Wu, P. (2004). Formability of ABO3 Perovskites. Journal of Alloys and Compounds, 372(1-2), 40-48.
  • Li, X., Zhao, H., Liang, J., Luo, Y., Chen, G., Shi, X., Sun, X. (2021). A-site Perovskite Oxides: An Emerging Functional Material for Electrocatalysis and Photocatalysis. Journal of Materials Chemistry A, 9(11), 6650-6670.
  • Liu, B., Nan, J., Zu, X., Zhang, X., Huang, W., Wang, W. (2020). La-based-adsorbents for Efficient Biological Phosphorus Treatment of Wastewater: Synergistically Strengthen of Chemical and Biological Removal. Chemosphere, 255, 127010.
  • Lobanov, M. V., Balagurov, A. M., Pomjakushin, V. J., Fischer, P., Gutmann, M., Abakumov, A. M., Van Tendeloo, G. (2000). Structural and Magnetic Properties of the Colossal Magnetoresistance Perovskite La0.85Ca0.15MnO3. Physical Review B, 61(13), 8941.
  • Methfessel, M. P. A. T., Paxton, A. T. (1989). High-precision Sampling for Brillouin-Zone Integration in Metals. Physical Review B, 40(6), 3616.
  • Monkhorst, H. J., Pack, J. D. (1976). Special Points for Brillouin-zone Integrations. Physical Review B, 13(12), 5188.
  • Murtaza, G., Gupta, S. K., Seddik, T., Khenata, R., Alahmed, Z. A., Ahmed, R., Omran, S. B. (2014). Structural, Electronic, Optical and Thermodynamic Properties of Cubic REGa3 (RE= Sc or Lu) Compounds: Ab Initio Study. Journal of Alloys and Compounds, 597, 36-44.
  • Nadeem, S., Tariq, S., Jamil, M. I., Ahmad, E., Gilani, S. S., & Munawar, K. S. (2016). DFT Study of Structural, Electronic, Thermo-elastic Properties and Plausible Origin of Superconductivity Due To Quantum Degenerate States in LaTiO3. Journal of Theoretical and Computational Chemistry, 15(05), 1650044.
  • Nzuzo, Y., Adeyinka, A., Carleschi, E., Doyle, B. P., Bingwa, N. (2021). Effect of d z2 Orbital Electron-Distribution of La-based Inorganic Perovskites on Surface Kinetics of A Model Reaction. Inorganic Chemistry Frontiers, 8(12), 3037-3048.
  • Örnek, O., Arıkan, N. (2016). Structural, Electronic, Elastic, Thermodynamic and Phonon Properties of LaX (X= Cd, Hg and Zn) Compounds in the B2 Phase. International Journal of Modern Physics B, 30(24), 1650169, 1-10. Pena, M. A., Fierro, J. L. G. (2001). Chemical Structures and Performance of Perovskite Oxides. Chemical Reviews, 101(7), 1981-2018.
  • Perdew, J. P., Burke, K., Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865.
  • Dulong, P. L., Petit, A. T. (1819). Recherches Sur Quelques Points İmportans de la Theorie de la Chaleur. Annales de Chimie et de Physique, 10, 395-413.
  • Pettifor, D. G., (1992). Theoretical Predictions of Structure and Related Properties of Intermetallics. Materials Science and Technology, 8(4), 345-349.
  • Reshak, A. H., Shalaginov, M. Y., Saeed, Y., Kityk, I. V., Auluck, S. (2011). First-Principles Calculations of Structural, Elastic, Electronic, and Optical Properties of Perovskite-Type KMgH3 Crystals: Novel Hydrogen Storage Material. The Journal of Physical Chemistry B, 115(12), 2836-2841.
  • Saal, J. E., Kirklin, S., Aykol, M., Meredig, B., Wolverton, C. (2013). Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD). The Journal of The Minerals, Metals & Materials Society, 65(11), 1501-1509.
  • Sato, T., Noréus, D., Takeshita, H., Häussermann, U. (2005). Hydrides with the Perovskite Structure: General Bonding and Stability Considerations and The New Representative CaNiH3. Journal of Solid State Chemistry, 178(11), 3381-3388.
  • Si, C., Zhang, C., Sunarso, J., Zhang, Z. (2018). Transforming Bulk Alloys into Nanoporous Lanthanum-Based Perovskite Oxides With High Specific Surface Areas and Enhanced Electrocatalytic Activities. Journal of Materials Chemistry A, 6(41), 19979-19988.
  • Stahn, J., Chakhalian, J., Niedermayer, C., Hoppler, J., Gutberlet, T., Voigt, J., Bernhard, C. (2005). Magnetic Proximity Effect in Perovskite Superconductor/Ferromagnet Multilayers. Physical Review B, 71(14), 140509.
  • Tariq, S., Jamil, M. I., Sharif, A., Ramay, S. M., Ahmad, H., Tahir, B. (2018). Exploring Structural, Electronic and Thermo-Elastic Properties of Metallic AMoO3 (A= Pb, Ba, Sr) molybdates. Applied Physics A, 124(1), 1-8.
  • Xue, D., Wu, S., Zhu, Y., Terabe, K., Kitamura, K., Wang, J. (2003). Nanoscale Domain Switching at Crystal Surfaces of Lithium Niobate. Chemical Physics Letters, 377(3-4), 475-480.
  • Yang, L., Yu, G., Ai, X., Yan, W., Duan, H., Chen, W., Zou, X. (2018). Efficient Oxygen Evolution Electrocatalysis in Acid by A Perovskite with Face-Sharing IrO6 Octahedral Dimers. Nature Communications, 9(1), 1-9.
  • Yashima, M., Tsujiguchi, T., Sakuda, Y., Yasui, Y., Zhou, Y., Fujii, K., Skinner, S. J. (2021). High Oxide-Ion Conductivity Through the Interstitial Oxygen Site in Ba7Nb4MoO20-Based Hexagonal Perovskite Related Oxides. Nature Communications, 12(1), 1-7.
  • Zhang, H., Li, N., Li, K., Xue, D. (2007). Structural Stability and Formability of ABO3-type Perovskite Compounds. Acta Crystallographica Section B: Structural Science, 63(6), 812-818.

Ab Initio Calculations to Investigate the Structural, Electronic, Elastic and Thermodynamic Properties of the Cubic Perovskite LaZnO3 Compound

Year 2022, Volume: 4 Issue: 2, 113 - 124, 30.12.2022
https://doi.org/10.54990/okufed.1215703

Abstract

In this study, ab-initio calculations were used to examine and to understand in depth the structural elastic, electronic and thermodynamic properties of the perovskite LaZnO3 compound in the E21 phase. Calculations were performed using the computational software package QUANTUM-ESPRESSO/PWSCF based on density functional theory (DFT) and pseudopotential method. The calculated lattice parameter (a0) is in good agreement with previous theoretical studies. Other calculated parameters, such as bulk modulus, anisotropy factor, Poisson's ratio, elastic constants and Young's modulus, were obtained and then compared with the theoretical result. In order to interpret the electronic band profile of the cubic perovskite LaZnO3 compound, band structures and density of states are presented. The metallic nature of the compound was determined. Subsequently, Debye temperature, melting temperature, internal energy, vibrational energy, entropy and specific heat capacity were also evaluated in the 0–800 K temperature range.

References

  • Al S, (2019). Investigations of Physical Properties of XTiH3 and Implications for Solid State Hydrogen Storage. Zeitschrift für Naturforschung A,74(11), 1023-1030.
  • Al, S. (2021). Elastic and Thermodynamic Properties of Cubic Perovskite Type NdXO3 (X= Ga, In). The European Physical Journal B, 94(5), 1-9.
  • AL, Selgin & Arıkan, N. (2019). Elastic, Electronic and Vibrational Properties of Ir-Based Refractory Superalloys. Sakarya University Journal of Science, 23(4), 501-508.
  • Arikan, N., Ersen, M., Ocak, H. Y., İyigör, A., Candan, A., Uǧur, Ş., Varshney, D. (2013). Ab-initio Study of Phonon Dispersion and Elastic Properties of l1 2 Intermetallics Ti3Al and Y3Al. Modern Physics Letters B, 27(30), 1350224, 27-30.
  • Arıkan, N., İyigör, A., Candan, A., Özduran, M., Karakoç, A., Uğur, Ş., . Guechi, N. (2014). Abinitio Study of the Structural, Electronic, Elastic and Vibrational Properties of the Intermetallic Pd3V and Pt3V Alloys in the L12 Phase. Metals and Materials International, 20(4), 765-773.
  • Arıkan, N., Ocak, H. Y., Dikici Yıldız, G., Yıldız, Y. G., Ünal, R. (2020). Investigation of the Mechanical, Electronic and Phonon Properties of X2scal (X= Ir, Os, and Pt) Heusler Compounds. Journal of the Korean Physical Society, 76(10), 916-922.
  • Benzoudji, F., Abid, O. M., Seddik, T., Yakoubi, A., Khenata, R., Meradji, H., Ocak, H. Y. (2019). Insight into the Structural, Elastic, Electronic, Thermoelectric, Thermodynamic and Optical Properties of MRhSb (M= Ti, Zr, Hf) Half-Heuslers From Ab-initio Calculations. Chinese Journal of Physics, 59, 434-448.
  • Bougherara, K., Litimein, F., Khenata, R., Uçgun, E., Ocak, H. Y., Uğur, Ş., Omran, S. B. (2013). Structural, Elastic, Electronic and Optical Properties of Cu3TMSe4 (TM= V, Nb and Ta) Sulvanite Compounds Via First-Principles Calculations. Science of Advanced Materials, 5(1), 97-106.
  • Bretos, I., Jiménez, R., Pérez‐Mezcua, D., Salazar, N., Ricote, J., Calzada, M. L. (2015). Low‐Temperature Liquid Precursors of Crystalline Metal Oxides Assisted by Heterogeneous Photocatalysis. Advanced Materials, 27(16), 2608-2613.
  • Dal Corso, A. (2016). Elastic Constants of Beryllium: A First-Principles Investigation. Journal of Physics: Condensed Matter, 28(7), 075401.
  • Davidson, C. G. (1975). 14) IF f lag D 0 THEN. Journal of Computational Physics, 17, 87-94.
  • De Paoli, A., Barresi, A. A. (2001). Deep Oxidation Kinetics of Trieline Over LaFeO3 Perovskite Catalyst. Industrial & Engineering Chemistry Research, 40(6), 1460-1464.
  • Screiber, E., Anderson, O., Soga, N., (1973). Elastic Constants and Their Measurements. New York: McGrawHill.
  • Galasso, F.S. (1990). Perovskites and High Tc Superconductors. New York: Gordon and Breach.
  • Fine, M. E., Brown, L. D., Marcus, H. L. (1984). Elastic Constants Versus Melting Temperature in Metals. Scripta Metallurgica, 18(9), 951-956.
  • Frantsevich, I. N., (1982). Elastic Constants and Elastic Moduli of Metals and Insulators. Reference book.
  • Gao, P., Tian, X., Nie, Y., Yang, C., Zhou, Z., Wang, Y. (2019). Promoted Peroxymonosulfate Activation into Singlet Oxygen Over Perovskite for Ofloxacin Degradation By Controlling the Oxygen Defect Concentration. Chemical Engineering Journal, 359, 828-839.
  • Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Wentzcovitch, R. M. (2009). Quantum Espresso: A Modular and Open-Source Software Project for Quantum Simulations of Materials. Journal of Physics: Condensed Matter, 21(39), 395502.
  • Giannozzi, P., Baseggio, O., Bonfà, P., Brunato, D., Car, R., Carnimeo, I., Baroni, S. (2020). Quantum Espresso Toward the Exascale. The Journal of Chemical Physics, 152(15), 154105.
  • Haines, J., Leger, J. M., Bocquillon, G. (2001). Synthesis and Design of Superhard Materials. Annual Review of Materials Research, 31, 1.
  • Hao, Y. J., Chen, X. R., Cui, H. L., Bai, Y. L. (2006). First-Principles Calculations of Elastic Constants of c-BN. Physica B: Condensed Matter, 382(1-2), 118-122.
  • Hautier, G., Fischer, C., Ehrlacher, V., Jain, A., Ceder, G. (2011). Data Mined Ionic Substitutions for the Discovery of New Compounds. Inorganic Chemistry, 50(2), 656-663.
  • Hohenberg, P., Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864.
  • Ji, Q., Bi, L., Zhang, J., Cao, H., Zhao, X. S. (2020). The Role of Oxygen Vacancies of ABO3 Perovskite Oxides in the Oxygen Reduction Reaction. Energy & Environmental Science, 13(5), 1408-1428.
  • Kajitani, M., Matsuda, M., Hoshikawa, A., Harjo, S., Kamiyama, T., Ishigaki, T., Izumi, F., Miyake, M. (2005). In Situ Neutron Diffraction Study on Fast Oxide Ion Conductor LaGaO3-Based Perovskite Compounds. Chemistry of materials, 17(16), 4235-4243.
  • Kohn, W., Sham, L. J. (1965). Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 140(4A), A1133.
  • Li, C., Soh, K. C. K., Wu, P. (2004). Formability of ABO3 Perovskites. Journal of Alloys and Compounds, 372(1-2), 40-48.
  • Li, X., Zhao, H., Liang, J., Luo, Y., Chen, G., Shi, X., Sun, X. (2021). A-site Perovskite Oxides: An Emerging Functional Material for Electrocatalysis and Photocatalysis. Journal of Materials Chemistry A, 9(11), 6650-6670.
  • Liu, B., Nan, J., Zu, X., Zhang, X., Huang, W., Wang, W. (2020). La-based-adsorbents for Efficient Biological Phosphorus Treatment of Wastewater: Synergistically Strengthen of Chemical and Biological Removal. Chemosphere, 255, 127010.
  • Lobanov, M. V., Balagurov, A. M., Pomjakushin, V. J., Fischer, P., Gutmann, M., Abakumov, A. M., Van Tendeloo, G. (2000). Structural and Magnetic Properties of the Colossal Magnetoresistance Perovskite La0.85Ca0.15MnO3. Physical Review B, 61(13), 8941.
  • Methfessel, M. P. A. T., Paxton, A. T. (1989). High-precision Sampling for Brillouin-Zone Integration in Metals. Physical Review B, 40(6), 3616.
  • Monkhorst, H. J., Pack, J. D. (1976). Special Points for Brillouin-zone Integrations. Physical Review B, 13(12), 5188.
  • Murtaza, G., Gupta, S. K., Seddik, T., Khenata, R., Alahmed, Z. A., Ahmed, R., Omran, S. B. (2014). Structural, Electronic, Optical and Thermodynamic Properties of Cubic REGa3 (RE= Sc or Lu) Compounds: Ab Initio Study. Journal of Alloys and Compounds, 597, 36-44.
  • Nadeem, S., Tariq, S., Jamil, M. I., Ahmad, E., Gilani, S. S., & Munawar, K. S. (2016). DFT Study of Structural, Electronic, Thermo-elastic Properties and Plausible Origin of Superconductivity Due To Quantum Degenerate States in LaTiO3. Journal of Theoretical and Computational Chemistry, 15(05), 1650044.
  • Nzuzo, Y., Adeyinka, A., Carleschi, E., Doyle, B. P., Bingwa, N. (2021). Effect of d z2 Orbital Electron-Distribution of La-based Inorganic Perovskites on Surface Kinetics of A Model Reaction. Inorganic Chemistry Frontiers, 8(12), 3037-3048.
  • Örnek, O., Arıkan, N. (2016). Structural, Electronic, Elastic, Thermodynamic and Phonon Properties of LaX (X= Cd, Hg and Zn) Compounds in the B2 Phase. International Journal of Modern Physics B, 30(24), 1650169, 1-10. Pena, M. A., Fierro, J. L. G. (2001). Chemical Structures and Performance of Perovskite Oxides. Chemical Reviews, 101(7), 1981-2018.
  • Perdew, J. P., Burke, K., Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865.
  • Dulong, P. L., Petit, A. T. (1819). Recherches Sur Quelques Points İmportans de la Theorie de la Chaleur. Annales de Chimie et de Physique, 10, 395-413.
  • Pettifor, D. G., (1992). Theoretical Predictions of Structure and Related Properties of Intermetallics. Materials Science and Technology, 8(4), 345-349.
  • Reshak, A. H., Shalaginov, M. Y., Saeed, Y., Kityk, I. V., Auluck, S. (2011). First-Principles Calculations of Structural, Elastic, Electronic, and Optical Properties of Perovskite-Type KMgH3 Crystals: Novel Hydrogen Storage Material. The Journal of Physical Chemistry B, 115(12), 2836-2841.
  • Saal, J. E., Kirklin, S., Aykol, M., Meredig, B., Wolverton, C. (2013). Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD). The Journal of The Minerals, Metals & Materials Society, 65(11), 1501-1509.
  • Sato, T., Noréus, D., Takeshita, H., Häussermann, U. (2005). Hydrides with the Perovskite Structure: General Bonding and Stability Considerations and The New Representative CaNiH3. Journal of Solid State Chemistry, 178(11), 3381-3388.
  • Si, C., Zhang, C., Sunarso, J., Zhang, Z. (2018). Transforming Bulk Alloys into Nanoporous Lanthanum-Based Perovskite Oxides With High Specific Surface Areas and Enhanced Electrocatalytic Activities. Journal of Materials Chemistry A, 6(41), 19979-19988.
  • Stahn, J., Chakhalian, J., Niedermayer, C., Hoppler, J., Gutberlet, T., Voigt, J., Bernhard, C. (2005). Magnetic Proximity Effect in Perovskite Superconductor/Ferromagnet Multilayers. Physical Review B, 71(14), 140509.
  • Tariq, S., Jamil, M. I., Sharif, A., Ramay, S. M., Ahmad, H., Tahir, B. (2018). Exploring Structural, Electronic and Thermo-Elastic Properties of Metallic AMoO3 (A= Pb, Ba, Sr) molybdates. Applied Physics A, 124(1), 1-8.
  • Xue, D., Wu, S., Zhu, Y., Terabe, K., Kitamura, K., Wang, J. (2003). Nanoscale Domain Switching at Crystal Surfaces of Lithium Niobate. Chemical Physics Letters, 377(3-4), 475-480.
  • Yang, L., Yu, G., Ai, X., Yan, W., Duan, H., Chen, W., Zou, X. (2018). Efficient Oxygen Evolution Electrocatalysis in Acid by A Perovskite with Face-Sharing IrO6 Octahedral Dimers. Nature Communications, 9(1), 1-9.
  • Yashima, M., Tsujiguchi, T., Sakuda, Y., Yasui, Y., Zhou, Y., Fujii, K., Skinner, S. J. (2021). High Oxide-Ion Conductivity Through the Interstitial Oxygen Site in Ba7Nb4MoO20-Based Hexagonal Perovskite Related Oxides. Nature Communications, 12(1), 1-7.
  • Zhang, H., Li, N., Li, K., Xue, D. (2007). Structural Stability and Formability of ABO3-type Perovskite Compounds. Acta Crystallographica Section B: Structural Science, 63(6), 812-818.
There are 49 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Ahmet Mikail Sarpkaya This is me 0000-0001-8028-3132

Nihat Arıkan 0000-0001-8028-3132

Publication Date December 30, 2022
Acceptance Date December 27, 2022
Published in Issue Year 2022 Volume: 4 Issue: 2

Cite

APA Sarpkaya, A. M., & Arıkan, N. (2022). Kübik Perovskit LaZnO3 Bileşiğinin Yapısal, Elektronik, Elastik ve Termodinamik Özelliklerini Araştırmak için Ab Initio Hesaplamaları. Osmaniye Korkut Ata Üniversitesi Fen Edebiyat Fakültesi Dergisi, 4(2), 113-124. https://doi.org/10.54990/okufed.1215703