Research Article
BibTex RIS Cite
Year 2021, Volume: 38 Issue: 3, 266 - 271, 01.05.2021

Abstract

References

  • Abdelkrim, H., Dominguez-Bendala, J., Wakeman, J., Arredouani, M., Soria, B., 2009. The immune boundaries for stem cell based therapies:problems and prospective solutions. J. Cell.Mol.Med. 13, 1464-1475.
  • Akasov, R., Haq, S., Haxho, F., Samuel, V., Burov, S. V., Markvicheva, E., Neufeld, R. J., & Szewczuk, M. R., 2016. Sialylation transmogrifies human breast and pancreatic cancer cells into 3D multicellular tumor spheroids using cyclic RGD-peptide induced self-assembly. Oncotarget. 7(40), 66119–66134.
  • Anthony, S., Leong, Y., Zhuang, Z., 2011. The changing role of pathology in breast cancer diagnosis and treatment. Pathobiology. 78, 99-114.
  • Demircan, G., & Mater, Y., 2019. Effects of Fluorescent Marked Maackia Amurensis-Lectin-1 and Wheat Germ Aglutin on the Cell Surface Glycan Profiles in Two Different Breast Cancer Cell Lines. İstanbul Tıp Fakültesi Dergisi, 82(2), 1–7.
  • Eccles, S. A., Aboagye, O. E., Ali, S., Anderson, S. A., Armes, J., Berditchevski, F., Blaydes, J. P., Brennan, K., Brown, J. N., Bryant, H. E., et al. 2013. Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer. Breast Cancer Research. 15, R92.
  • Fujitani, N., Furukawa, J. I., Araki, K., Fujioka, T., Takegawa, Y., Piao, J., Nishioka, T., Tamura, T., Nikaido, T., Ito, M., Nakamura, Y., Shinohara, Y., 2013. Total cellular glycomics allows characterizing cells and streamlining the discovery process for cellular biomarkers. PNAS. 110-6, 2105-2110.
  • Gangaram – Panday, S., Faas, M. M., Vos, P., 2007. Towards stem – cell therapy in the endocrine pancreas. TRENDS in Molecular Medicine. 13, 4.
  • Ishihara, T., Kakiya, K., Takahashi, K., Miwa, H., Rokushima, M., Yoshinaga, T., Tanaka, Y., Ito, T., Togame, H., Takemoto, H., Amano, M., Iwasaki, N., Minami, A., Nishimura, S. I., 2013. Discovery of novel differentiation markers in the early stage of chondrogenesis by glycoform-focused reverse proteomics and genomics. Biochimica et Biophysica Acta. 27758:p11;4C:3,6,9.
  • Kataoka, M., Tavassoli, M., 1985. Identification of lectin – like substances recognizing galactosyl residues of glycoconjugates on the plasma membrane of marrow sinüs endothelium. Blood. 65, 1163-1171.
  • Kawabe, K., Tateyama, D., Toyoda, H., Kawasaki, N., Hashii, N., Nakao, H., Matsumoto, S., Nonaka, M., Matsumura, H., Hirose, Y., Morita, A., Katayama, N., Sakuma, M., Kawasaki, N., Furue, M. K., Kawasaki, T., 2013. A novel antibody for human induced pluripotent stem cells and embryonic stem cells recognizes a type of keretan sulfate lacking oversulfated structures. Glycobiology. 23(3), 322-336.
  • Kohnz, R. A., Roberts, L. S., Detomaso, D., Bideyan, L., Yan, P., Bandyopadhyay, S., Goga, A., Yosef, N., & Nomura, D. K. 2016. Protein Sialylation Regulates a Gene Expression Signature that Promotes Breast Cancer Cell Pathogenicity. ACS Chemical Biology. 11(8), 2131–2139.
  • Lanctot, P. M., Gage, F.H., Varki, A. P., 2007. The Glycans of stem cells. Current Opinion in Chemical Biology. 11, 373-380.
  • Lawrence, R., Brown, J. R., Lorey, F., Dickson, P. I., Crawford, B. E., Esko, J. D., 2014. Glcan- based biomarkers for mucopolysaccharidoses. Molecular Genetics and Metabolism. 111, 73-83.
  • Martinez-Duncker, I., Salinas-Marin, R., Martinez-Duncker, C., 2011. Towards In Vivo Imaging of Cancer Sialylation . International Journal of Molecular Imaging, 2011, 1–10.
  • Mater, Y., Beyhan-Özdas, S., 2018. The analysis of surface saccharide profiles through fluorescein-labelled lectins in a rat pancreatic tissue with established metabolic syndrome model. Turkish Journal of Biochemistry. 44(1), 98–104. Nath, S., Devi, G. R., 2016. Three-Dimensional Culture Systems in Cancer Research: Focus on Tumor Spheroid Model. Pharmacol Ther. 163, 94–108.
  • Patil, S. A., Chandrasekaran, E. V., Matta, K. L., Parikh, A., Tzanakakis, E. S., Neelamegham, S., 2012, Scaling down the size and increasing the throughput of glycosyltransferase assay: activity changes on stem cell differentiation. Analytical Biochemistry. 425, 135-144.
  • Pinho, S. S., Reis, C. A., 2015. Glycosylation in cancer: Mechanisms and clinical implications. Nature Reviews Cancer. 15(9), 540–555.
  • Samraj, A. N., Läubli, H., Varki, N., & Varki, A., 2014. Involvement of a non-human sialic acid in human cancer. Frontiers in Oncology. 1–13.
  • Schauer, R., Kamerling, J. P., 2018. Exploration of the Sialic Acid World. Advances in Carbohydrate Chemistry and Biochemistry. 75, 1-213.
  • Sethuraman, N., Stadheim, T. A., 2006. Challenges in therapeutic glycoprotein production. Current Opinion in Biotechnology. 17, 3411-346.
  • Song, E., Mechref, Y., 2015. Defining glycoprotein cancer biomarkers by MS in conjunction with glycoprotein enrichment. Biomark Med. 9(9), 835–844. Whelan, S. A., Lu, M., He, J., 2009. Mass spectrometry (LC-MS/MS) site-mapping of N-glycosylated membrane proteins for breast cancer biomarkers. J Proteome Res. 8(8), 4151-60.
  • Varki, A., 2017. Glycosylation Changes in Cancer. In Cold Spring Harbor (NY) 3rd edition. pp. 597–609.
  • Varki, A., 2008. Sialic acid in human health and disease. Trend in Molecular Medicine. 14,8:351-360.
  • Yu, C. C., Hill, T., Kwan, D. H., Cheng, H. M., Lin, C. C., Wakarchuk, W., Withers, S. G., 2014. A plate – based high – throughput activity assay for polysialyltransferase from Neisseria meningitidis. Analytical Biochemistry. 444, 67-74.

The Investigation of the Changes in the Surface Glycoconjugates Using Two Different Spheroid Models of Breast Cancer Cells and Availability Assessment of These Spheroid Models for Rapid Diagnosis

Year 2021, Volume: 38 Issue: 3, 266 - 271, 01.05.2021

Abstract

The importance of early cancer diagnosis has led to development of many different diagnostic methods. In this context, the studies investigating the presence and amount of sugar residues to use as indicators in the identification of cancer cell type have become prominent. In the present study, sialic acids found on the membrane surfaces of ER (+) MCF-7 and ER (-) MDA-MB-231 breast cancer cell lines were labeled using three dimensional (3D) cell culture (Spheroid) model as the closest method to the patient sample, thus its natural environment, among the cell culture methods. These sugar units that play a role in regulation of important immune characteristics such as recognition, binding and metastasis were made visualizable by applying fluorescent-labeled lectins such as FITC-(Wheat Germ Agglutinin) specifically binding to sialic acid units (GlcNAc, Neu5Ac) including particularly ß-GlcNAc and FITC-(Maackia Amurensis-Lectin-1) specifically binding to Galß4GlcNAc type sialic acids. These glycan units were specifically labeled with FITC-(Maackia Amurensis-Lectin-1) and FITC-(Wheat Germ Agglutinin) and radiation intensities were analyzed relatively. The two different breast cancer cell cultures were compared with respect to change in the amounts of sialic acid residues containing α-2,3- and α-2,6 bonds using fluorescent-labeled lectins.
In the present study, we have performed a precise, accurate and rapid determination of the sugar content in the different breast cancer cell surface lines by means of fluorescent-labeled lectins and carried out a relative comparison between the micrographs.

References

  • Abdelkrim, H., Dominguez-Bendala, J., Wakeman, J., Arredouani, M., Soria, B., 2009. The immune boundaries for stem cell based therapies:problems and prospective solutions. J. Cell.Mol.Med. 13, 1464-1475.
  • Akasov, R., Haq, S., Haxho, F., Samuel, V., Burov, S. V., Markvicheva, E., Neufeld, R. J., & Szewczuk, M. R., 2016. Sialylation transmogrifies human breast and pancreatic cancer cells into 3D multicellular tumor spheroids using cyclic RGD-peptide induced self-assembly. Oncotarget. 7(40), 66119–66134.
  • Anthony, S., Leong, Y., Zhuang, Z., 2011. The changing role of pathology in breast cancer diagnosis and treatment. Pathobiology. 78, 99-114.
  • Demircan, G., & Mater, Y., 2019. Effects of Fluorescent Marked Maackia Amurensis-Lectin-1 and Wheat Germ Aglutin on the Cell Surface Glycan Profiles in Two Different Breast Cancer Cell Lines. İstanbul Tıp Fakültesi Dergisi, 82(2), 1–7.
  • Eccles, S. A., Aboagye, O. E., Ali, S., Anderson, S. A., Armes, J., Berditchevski, F., Blaydes, J. P., Brennan, K., Brown, J. N., Bryant, H. E., et al. 2013. Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer. Breast Cancer Research. 15, R92.
  • Fujitani, N., Furukawa, J. I., Araki, K., Fujioka, T., Takegawa, Y., Piao, J., Nishioka, T., Tamura, T., Nikaido, T., Ito, M., Nakamura, Y., Shinohara, Y., 2013. Total cellular glycomics allows characterizing cells and streamlining the discovery process for cellular biomarkers. PNAS. 110-6, 2105-2110.
  • Gangaram – Panday, S., Faas, M. M., Vos, P., 2007. Towards stem – cell therapy in the endocrine pancreas. TRENDS in Molecular Medicine. 13, 4.
  • Ishihara, T., Kakiya, K., Takahashi, K., Miwa, H., Rokushima, M., Yoshinaga, T., Tanaka, Y., Ito, T., Togame, H., Takemoto, H., Amano, M., Iwasaki, N., Minami, A., Nishimura, S. I., 2013. Discovery of novel differentiation markers in the early stage of chondrogenesis by glycoform-focused reverse proteomics and genomics. Biochimica et Biophysica Acta. 27758:p11;4C:3,6,9.
  • Kataoka, M., Tavassoli, M., 1985. Identification of lectin – like substances recognizing galactosyl residues of glycoconjugates on the plasma membrane of marrow sinüs endothelium. Blood. 65, 1163-1171.
  • Kawabe, K., Tateyama, D., Toyoda, H., Kawasaki, N., Hashii, N., Nakao, H., Matsumoto, S., Nonaka, M., Matsumura, H., Hirose, Y., Morita, A., Katayama, N., Sakuma, M., Kawasaki, N., Furue, M. K., Kawasaki, T., 2013. A novel antibody for human induced pluripotent stem cells and embryonic stem cells recognizes a type of keretan sulfate lacking oversulfated structures. Glycobiology. 23(3), 322-336.
  • Kohnz, R. A., Roberts, L. S., Detomaso, D., Bideyan, L., Yan, P., Bandyopadhyay, S., Goga, A., Yosef, N., & Nomura, D. K. 2016. Protein Sialylation Regulates a Gene Expression Signature that Promotes Breast Cancer Cell Pathogenicity. ACS Chemical Biology. 11(8), 2131–2139.
  • Lanctot, P. M., Gage, F.H., Varki, A. P., 2007. The Glycans of stem cells. Current Opinion in Chemical Biology. 11, 373-380.
  • Lawrence, R., Brown, J. R., Lorey, F., Dickson, P. I., Crawford, B. E., Esko, J. D., 2014. Glcan- based biomarkers for mucopolysaccharidoses. Molecular Genetics and Metabolism. 111, 73-83.
  • Martinez-Duncker, I., Salinas-Marin, R., Martinez-Duncker, C., 2011. Towards In Vivo Imaging of Cancer Sialylation . International Journal of Molecular Imaging, 2011, 1–10.
  • Mater, Y., Beyhan-Özdas, S., 2018. The analysis of surface saccharide profiles through fluorescein-labelled lectins in a rat pancreatic tissue with established metabolic syndrome model. Turkish Journal of Biochemistry. 44(1), 98–104. Nath, S., Devi, G. R., 2016. Three-Dimensional Culture Systems in Cancer Research: Focus on Tumor Spheroid Model. Pharmacol Ther. 163, 94–108.
  • Patil, S. A., Chandrasekaran, E. V., Matta, K. L., Parikh, A., Tzanakakis, E. S., Neelamegham, S., 2012, Scaling down the size and increasing the throughput of glycosyltransferase assay: activity changes on stem cell differentiation. Analytical Biochemistry. 425, 135-144.
  • Pinho, S. S., Reis, C. A., 2015. Glycosylation in cancer: Mechanisms and clinical implications. Nature Reviews Cancer. 15(9), 540–555.
  • Samraj, A. N., Läubli, H., Varki, N., & Varki, A., 2014. Involvement of a non-human sialic acid in human cancer. Frontiers in Oncology. 1–13.
  • Schauer, R., Kamerling, J. P., 2018. Exploration of the Sialic Acid World. Advances in Carbohydrate Chemistry and Biochemistry. 75, 1-213.
  • Sethuraman, N., Stadheim, T. A., 2006. Challenges in therapeutic glycoprotein production. Current Opinion in Biotechnology. 17, 3411-346.
  • Song, E., Mechref, Y., 2015. Defining glycoprotein cancer biomarkers by MS in conjunction with glycoprotein enrichment. Biomark Med. 9(9), 835–844. Whelan, S. A., Lu, M., He, J., 2009. Mass spectrometry (LC-MS/MS) site-mapping of N-glycosylated membrane proteins for breast cancer biomarkers. J Proteome Res. 8(8), 4151-60.
  • Varki, A., 2017. Glycosylation Changes in Cancer. In Cold Spring Harbor (NY) 3rd edition. pp. 597–609.
  • Varki, A., 2008. Sialic acid in human health and disease. Trend in Molecular Medicine. 14,8:351-360.
  • Yu, C. C., Hill, T., Kwan, D. H., Cheng, H. M., Lin, C. C., Wakarchuk, W., Withers, S. G., 2014. A plate – based high – throughput activity assay for polysialyltransferase from Neisseria meningitidis. Analytical Biochemistry. 444, 67-74.
There are 24 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Clinical Research
Authors

Yosun Mater 0000-0002-7161-0637

Günnur Demircan 0000-0001-7355-9065

Publication Date May 1, 2021
Submission Date November 14, 2020
Acceptance Date February 1, 2021
Published in Issue Year 2021 Volume: 38 Issue: 3

Cite

APA Mater, Y., & Demircan, G. (2021). The Investigation of the Changes in the Surface Glycoconjugates Using Two Different Spheroid Models of Breast Cancer Cells and Availability Assessment of These Spheroid Models for Rapid Diagnosis. Journal of Experimental and Clinical Medicine, 38(3), 266-271.
AMA Mater Y, Demircan G. The Investigation of the Changes in the Surface Glycoconjugates Using Two Different Spheroid Models of Breast Cancer Cells and Availability Assessment of These Spheroid Models for Rapid Diagnosis. J. Exp. Clin. Med. May 2021;38(3):266-271.
Chicago Mater, Yosun, and Günnur Demircan. “The Investigation of the Changes in the Surface Glycoconjugates Using Two Different Spheroid Models of Breast Cancer Cells and Availability Assessment of These Spheroid Models for Rapid Diagnosis”. Journal of Experimental and Clinical Medicine 38, no. 3 (May 2021): 266-71.
EndNote Mater Y, Demircan G (May 1, 2021) The Investigation of the Changes in the Surface Glycoconjugates Using Two Different Spheroid Models of Breast Cancer Cells and Availability Assessment of These Spheroid Models for Rapid Diagnosis. Journal of Experimental and Clinical Medicine 38 3 266–271.
IEEE Y. Mater and G. Demircan, “The Investigation of the Changes in the Surface Glycoconjugates Using Two Different Spheroid Models of Breast Cancer Cells and Availability Assessment of These Spheroid Models for Rapid Diagnosis”, J. Exp. Clin. Med., vol. 38, no. 3, pp. 266–271, 2021.
ISNAD Mater, Yosun - Demircan, Günnur. “The Investigation of the Changes in the Surface Glycoconjugates Using Two Different Spheroid Models of Breast Cancer Cells and Availability Assessment of These Spheroid Models for Rapid Diagnosis”. Journal of Experimental and Clinical Medicine 38/3 (May 2021), 266-271.
JAMA Mater Y, Demircan G. The Investigation of the Changes in the Surface Glycoconjugates Using Two Different Spheroid Models of Breast Cancer Cells and Availability Assessment of These Spheroid Models for Rapid Diagnosis. J. Exp. Clin. Med. 2021;38:266–271.
MLA Mater, Yosun and Günnur Demircan. “The Investigation of the Changes in the Surface Glycoconjugates Using Two Different Spheroid Models of Breast Cancer Cells and Availability Assessment of These Spheroid Models for Rapid Diagnosis”. Journal of Experimental and Clinical Medicine, vol. 38, no. 3, 2021, pp. 266-71.
Vancouver Mater Y, Demircan G. The Investigation of the Changes in the Surface Glycoconjugates Using Two Different Spheroid Models of Breast Cancer Cells and Availability Assessment of These Spheroid Models for Rapid Diagnosis. J. Exp. Clin. Med. 2021;38(3):266-71.