Review
BibTex RIS Cite
Year 2022, Volume: 39 Issue: 1, 256 - 268, 01.01.2022

Abstract

References

  • 1. Nestler J. Insulin regulation of human ovarian androgens. Hum Reprod. 12(suppl 1), 1997; 53-62. DOI: 10.1093/humrep/12.suppl_1.53
  • 2. Schoemaker J. Neuroendocrine control in polycystic ovary-like syndrome. Gynec Endocrino. 1991; 5(4), 277-288. DOI: 10.3109/09513599109028449
  • 3. Diamanti-Kandarakis E & Piperi C. Genetics of polycystic ovary syndrome: searching for the way out of the labyrinth. Hum Reprod Update. 2005; 11(6), 631-643. DOI: 10.1093/humupd/dmi025
  • 4. Xita N, Georgiou I, & Tsatsoulis A. The genetic basis of polycystic ovary syndrome. Eur J Endocrinol. 2002; 717-725. DOI: 10.1530/eje.0.1470717
  • 5. Diamanti-Kandarakis E & Dunaif A. Insulin Resistance and the Polycystic Ovary Syndrome Revisited: An Update on Mechanisms and Implications. Endocrine Reviews. 2012; 33(6), 981-1030. DOI: 10.1210/er.2011-1034
  • 6. Diamanti-Kandarakis E & Dunaif A. PolyCystic Ovarian Syndrome: An Updated Overview. Front Physiol. 2012; 7, 124. https://doi.org/10.3389/fphys.2016.00124
  • 7. Bajuk Studen K & Pfeifer M. Cardiometabolic risk in polycystic ovary syndrome. Endocr Connect. 2018; 7(7), R238-R251. DOI: 10.1530/ec-18-0129
  • 8. Wang, F., Wang, S., Zhang, Z., Lin, Q., Liu, Y., & Xiao, Y. et al. Defective insulin signaling and the protective effects of dimethyldiguanide during follicular development in the ovaries of polycystic ovary syndrome. Mol Med Rep. 2017; 16(6), 8164-8170. DOI: 10.3892/mmr.2017.7678
  • 9. Dunaif A, Xia J, Book C, Schenker E & Tang Z. Excessive insulin receptor serine phosphorylation in cultured fibroblasts and in skeletal muscle. A potential mechanism for insulin resistance in the polycystic ovary syndrome. J Clin Invest. 1995; 96 (2), 801-810. DOI: 10.1172/jci118126
  • 10. Dunaif A, Segal K, Shelley D, Green G, Dobrjansky A & Licholai T. Evidence for distinctive and intrinsic defects in insulin action in Polycystic Ovary Syndrome. Diabetes. 1992; 41(10), 1257-1266. DOI: 10.2337/diab.41.10.1257
  • 11. Venkatesan A. Insulin Resistance in Polycystic Ovary Syndrome: Progress and Paradoxes. Recent Prog Horm Res. 2001; 56(1), 295-308. DOI: 10.1210/rp.56.1.295
  • 12. Sano H, Higashi T, Matsumoto K, Melkko J, Jinnouchi Y, & Ikeda K. et al. Insulin Enhances Macrophage Scavenger Receptor-mediated Endocytic Uptake of Advanced Glycation End Products. J Biol Chem. 1998; 273(15), 8630-8637. DOI: 10.1074/jbc.273.15.8630
  • 13. Diamanti-Kandarakis E, Piperi C, Kalofoutis A & Creatsas G. Increased levels of serum advanced glycation end-products in women with polycystic ovary syndrome. Clin Endocrinol. 2005; 62(1), 37-43. DOI: 10.1111/j.1365-2265.2004.02170.x
  • 14. Ali A, Paramanya A, Prairna, Doukani K. Zehra S. Antioxidants in glycation related diseases. In Oxidative Stress and Antioxidant Defense: Biomedical Value in Health and Diseases, Md. Sahab Uddin and Aman Upaganlawar (Eds.). NOVA Science Publishers, Hauppauge, USA.2019. Pp. 465-488
  • 15. Ahmed N. Advanced glycation end products—role in pathology of diabetic complications. Diabetes Res Clin Pract. 2005; 67(1), 3-21. DOI: 10.1016/j.diabres.2004.09.004
  • 16. Draznin B. Molecular Mechanisms of Insulin Resistance: Serine Phosphorylation of Insulin Receptor Substrate-1 and Increased Expression of p85: The Two Sides of a Coin. Diabetes. 2006; 55(8), 2392-2397. DOI: 10.2337/db06-0391
  • 17. Ueki K, Algenstaedt P, Mauvais-Jarvis F, & Kahn C. Positive and Negative Regulation of Phosphoinositide 3-Kinase-Dependent Signaling Pathways by Three Different Gene Products of the p85α Regulatory Subunit. Mol Cell Biol. 2000; 20(21), 8035-8046. DOI: 10.1128/mcb.20.21.8035-8046.2000
  • 18. Terauchi Y, Tsuji Y, Satoh S, Minoura H, Murakami K, & Okuno A. et al. Increased insulin sensitivity and hypoglycaemia in mice lacking the p85α subunit of phosphoinositide 3–kinase. Nat Genet. 1999; 21(2), 230-235. DOI: 10.1038/6023
  • 19. Giorgino F, Pedrini M, Matera L & Smith R. Specific Increase in p85α Expression in Response to Dexamethasone Is Associated with Inhibition of Insulin-like Growth Factor-I Stimulated Phosphatidylinositol 3-Kinase Activity in Cultured Muscle Cells. J Biol Chem. 1997; 272(11), 7455-7463. DOI: 10.1074/jbc.272.11.7455
  • 20. Cornier M, Bessesen D, Gurevich I, Leitner J & Draznin B. Nutritional upregulation of p85α expression is an early molecular manifestation of insulin resistance. Diabetologia. 2006; 49(4), 748-754. DOI: 10.1007/s00125-006-0148-0
  • 21. Bandyopadhyay G, Yu J, Ofrecio J & Olefsky J. Increased p85/55/50 Expression and Decreased Phosphatidylinositol 3-Kinase Activity in Insulin-Resistant Human Skeletal Muscle. Diabetes. 2005; 54(8), 2351-2359. DOI: 10.2337/diabetes.54.8.2351
  • 22. Saini V. Molecular mechanisms of insulin resistance in type 2 diabetes mellitus. World J Diabetes. 2010; 1(3):68-75. DOI:10.4239/wjd.v1.i3.68
  • 23. Qiao LY, Goldberg JL, Russell JC & Sun XJ. Identification of enhanced serine kinase activity in insulin resistance. J Biol Chem. 1999; 274(15), 10625-10632. DOI: 10.1074/jbc.274.15.10625
  • 24. Samuel V, & Shulman G. Mechanisms for Insulin Resistance: Common Threads and Missing Links. Cell. 2012; 148(5), 852-871. DOI: 10.1016/j.cell.2012.02.017
  • 25. Samuel V, Petersen K & Shulman G. Lipid-induced insulin resistance: unravelling the mechanism. The Lancet. 2010; 375(9733), 2267-2277. DOI: 10.1016/s0140-6736(10)60408-4
  • 26. Itani S, Ruderman N, Schmieder F & Boden, G. Lipid-Induced Insulin Resistance in Human Muscle Is Associated With Changes in Diacylglycerol, Protein Kinase C, and I B-. Diabetes. 2002; 51(7), 2005-2011. DOI: 10.2337/diabetes.51.7.2005
  • 27. Garvey WT, Maianu L, Zhu JH, Brechtel-Hook G, Wallace P & Baron AD. Evidence for defects in the trafficking and translocation of GLUT4 glucose transporters in skeletal muscle as a cause of human insulin resistance. J Clin Invest. 1998; 101(11), 2377–2386. https://doi.org/10.1172/JCI1557
  • 28. Fabbrini E, Magkos F, Mohammed B, Pietka T, Abumrad N & Patterson B. et al. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc Natl Acad Sci USA. 2009 106(36), 15430-15435. DOI: 10.1073/pnas.0904944106
  • 29. Kaufman R. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 1999; 13(10), 1211-1233. DOI: 10.1101/gad.13.10.1211
  • 30. Dresner A, Laurent D, Marcucci M, Griffin M, Dufour S & Cline G. et al. Effects of free fatty acids on glucose transport and IRS-1–associated phosphatidylinositol 3-kinase activity. J Clin Invest. 1999; 103(2), 253-259. DOI: 10.1172/jci5001
  • 31. Kumar D, Ali A. 2019. Antiglycation and Antiaggregation potential of Thymoquinine. Nat Volat Essent Oils. 6 (1): 25-33
  • 32. Hodge J. Dehydrated Foods, Chemistry of Browning Reactions in Model Systems. J Agric Food Chem. 1953; 1(15), 928-943. DOI: 10.1021/jf60015a004
  • 33. Paul R & Bailey A. Glycation of collagen: the basis of its central role in the late complications of ageing and diabetes. Int J Biochem Cell Biol. 1996; 28(12), 1297-1310. DOI: 10.1016/s1357-2725(96)00079-9
  • 34. Thorpe S & Baynes J. Maillard reaction products in tissue proteins: New products and new perspectives. Amino Acids. 2003; 25(3-4), 275-281. DOI: 10.1007/s00726-003-0017-9
  • 35. Ali A, More T, Hoonjan A K, Sivakami S. 2017. Antiglycating potential of Acesulfame potassium: An artificial sweetener. App Physiol Nutr Metabol. 2017. 42(10):1054-1063. http://dx.doi.org/10.1139/apnm-2017-0119.
  • 36. Reddy S, Bichler J, Wells-Knecht K, Thorpe S & Baynes J. N.epsilon.-(Carboxymethyl)lysine Is a Dominant Advanced Glycation End Product (AGE) Antigen in Tissue Proteins. Biochem. 1995; 34(34), 10872-10878. DOI: 10.1021/bi00034a021
  • 37. Negre-Salvayre A, Coatrieux C, Ingueneau C & Salvayre R. Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. Br J Pharmacol. 2008; 153(1), 6-20. DOI: 10.1038/sj.bjp.0707395
  • 38. Moldogazieva N, Mokhosoev I, Mel’nikova T, Porozov Y & Terentiev A. Oxidative Stress and Advanced Lipoxidation and Glycation End Products (ALEs and AGEs) in Aging and Age-Related Diseases. Oxid Med Cell Longev. 2019; 1-14. DOI: 10.1155/2019/3085756
  • 39. Kim J & Choi Y. Dyslipidemia in women with polycystic ovary syndrome. Obstet Gynecol Sci. 2013; 56(3), 137. DOI: 10.5468/ogs.2013.56.3.137
  • 40. Rutkowska A & Diamanti-Kandarakis E. (2016). Do Advanced Glycation End Products (AGEs) Contribute to the Comorbidities of Polycystic Ovary Syndrome (PCOS)?. Curr Pharm Des. 2016; 22(36), 5558-5571. DOI: 10.2174/1381612822666160714094404
  • 41. Gkogkolou P & Böhm M. (2012). Advanced glycation end products: Key players in skin aging? Dermatoendocrinol. 2012; 4(3), 259–270. https://doi.org/10.4161/derm.22028
  • 42. Miyata T, Inagi R, Iida Y, Sato M, Yamada N & Oda O. et al. Involvement of beta 2-microglobulin modified with advanced glycation end products in the pathogenesis of hemodialysis-associated amyloidosis. Induction of human monocyte chemotaxis and macrophage secretion of tumor necrosis factor-alpha and interleukin-1. J Clin Invest. 1994; 93(2), 521-528. DOI: 10.1172/jci117002
  • 43. Bierhaus A, Humpert P, Morcos M, Wendt T, Chavakis T & Arnold B. et al. Understanding RAGE, the receptor for advanced glycation end products. J Mol Med. 2005; 83(11), 876-886. DOI: 10.1007/s00109-005-0688-7
  • 44. Xue M, Rabbani N, & Thornalley P. Glyoxalase in ageing. Semin Cell Dev Biol. 2011; 22(3), 293-301. DOI: 10.1016/j.semcdb.2011.02.013
  • 45. Chen L, Chen R, Wang H & Liang F. Mechanisms Linking Inflammation to Insulin Resistance. Int J Endocrinol. 2015; 1-9. DOI: 10.1155/2015/508409
  • 46. Tanaka N, Yonekura H, Yamagishi S, Fujimori H, Yamamoto Y, & Yamamoto H. (2000). The Receptor for Advanced Glycation End Products Is Induced by the Glycation Products Themselves and Tumor Necrosis Factor-α through Nuclear Factor-κB, and by 17β-Estradiol through Sp-1 in Human Vascular Endothelial Cells. J Biol Chem, 275(33), 25781-25790. DOI: 10.1074/jbc.m001235200
  • 47. Diamanti-Kandarakis E & Papavassiliou A. Molecular mechanisms of insulin resistance in polycystic ovary syndrome. Trends Mol Med. 2006; 12(7), 324-332. DOI: 10.1016/j.molmed.2006.05.006
  • 48. Baptiste, C., Battista, M., Trottier, A., & Baillargeon, J. Insulin and hyperandrogenism in women with polycystic ovary syndrome. J Steroid Biochem Mol Biol. 2010; 122(1-3), 42-52. doi: 10.1016/j.jsbmb.2009.12.010
  • 49. Schoemaker J. Neuroendocrine control in polycystic ovary-like syndrome. Gynecol Endocrinol. 1991; 5(4), 277-288. DOI: 10.3109/09513599109028449
  • 50. Fauser B, Tarlatzis B, Rebar R, Legro R, Balen A & Lobo R. et al. Consensus on women’s health aspects of polycystic ovary syndrome (PCOS): the Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Fertil Steril. 2012; 97(1), 28-38.e25. DOI: 10.1016/j.fertnstert.2011.09.024
  • 51. Kirschner M & Wayne Bardin C. Androgen production and metabolism in normal and virilized women. Metabolism. 1972; 21(7), 667-688. DOI: 10.1016/0026-0495(72)90090-x
  • 52. Balen A. The pathophysiology of polycystic ovary syndrome: trying to understand PCOS and its endocrinology. Best Pract Res Clin Obstet Gynaecol. 2004; 18(5), 685-706. DOI: 10.1016/j.bpobgyn.2004.05.004
  • 53. Zhang LH, Rodriguez H, Ohno S & Miller WL. Serine phosphorylation of human P450c17 increases 17, 20-lyase activity: implications for adrenarche and the polycystic ovary syndrome. Proc Natl Acad Sci USA. 1995; 92: 10619–10623. https://dx.doi.org/10.1073%2Fpnas.92.23.10619
  • 54. White D, Leigh A, Wilson C, Donaldson A & Franks S. Gonadotropin and gonadal steroid response to a single dose of a long-acting agonist of gonadotropin-releasing hormone in ovulatory and anovulatory women with polycystic ovary syndrome. Clin Endocrinol. 1995; 42(5), 475-481. DOI: 10.1111/j.1365-2265.1995.tb02665.x
  • 55. Sıklar Z, Berberoğlu M, Çamtosun E, & Kocaay P. Diagnostic Characteristics and Metabolic Risk Factors of Cases with Polycystic Ovary Syndrome during Adolescence. J Pediatr Adolesc Gynecol. 2015; 28(2), 78-83. DOI: 10.1016/j.jpag.2014.05.006
  • 56. Baillargeon J, Iuorno M & Nestler J. Insulin Sensitizers for Polycystic Ovary Syndrome. Clin Obstet Gynecol. 2003; 46(2), 325-340. DOI: 10.1097/00003081-200306000-00011
  • 57. Dunaif A. Hyperandrogenic anovulation (PCOS): A unique disorder of insulin action associated with an increased risk of non-insulin-dependent diabetes mellitus. Am J Med. 1995; 98(1), S33-S39. DOI: 10.1016/s0002-9343(99)80057-6
  • 58. Rathsman B, Rosfors S, Sjöholm Å & Nyström T. Early signs of atherosclerosis are associated with insulin resistance in non-obese adolescent and young adults with type 1 diabetes. Cardiovasc Diabetol. 2012; 11(1), 145. DOI: 10.1186/1475-2840-11-145
  • 59. Bhattacharya S & Jha A. Prevalence and risk of metabolic syndrome in adolescent Indian girls with polycystic ovary syndrome using the 2009 ‘joint interim criteria’. J Obstet Gynaecol Res. 2011; 37(10), 1303-1307. DOI: 10.1111/j.1447-0756.2010.01516.x
  • 60. Hart R, Doherty D, Mori T, Huang R, Norman R & Franks S. et al. Extent of metabolic risk in adolescent girls with features of polycystic ovary syndrome. Fertil Steril. 2011; 95(7), 2347-2353.e1. DOI: 10.1016/j.fertnstert.2011.03.001
  • 61. Lass N, Kleber M, Winkel K, Wunsch R & Reinehr T. Effect of Lifestyle Intervention on Features of Polycystic Ovarian Syndrome, Metabolic Syndrome, and Intima-Media Thickness in Obese Adolescent Girls. J Clin Endocrinol Metab. 2011; 96(11), 3533-3540. DOI: 10.1210/jc.2011-1609
  • 62. Garg D, Merhi Z. Relationship between Advanced Glycation End Products and Steroidogenesis in PCOS. Reprod Biol Endocrinol. 2016; 14(1):71. Published 2016 Oct 21. DOI:10.1186/s12958-016-0205-6
  • 63. Chatzigeorgiou A, Kandaraki E, Piperi C, Livadas S, Papavassiliou A & Koutsilieris, M. et al. Dietary glycotoxins affect scavenger receptor expression and the hormonal profile of female rats. J Endocrinol. 2013; 218(3), 331-337. DOI: 10.1530/joe-13-0175
  • 64. Franks S. Polycystic Ovary Syndrome. N Engl J Med. 1995; 333(13), 853-861. DOI: 10.1056/nejm199509283331307
  • 65. Rabbani N & Thornalley P. Dicarbonyl stress in cell and tissue dysfunction contributing to ageing and disease. Biochem Biophys Res Commun. 2015; 458(2), 221-226. DOI: 10.1016/j.bbrc.2015.01.140
  • 66. Zhao Z, Zhao C, Zhang X, Zheng F, Cai W, Vlassara H, & Ma Z. Advanced Glycation End Products Inhibit Glucose-Stimulated Insulin Secretion through Nitric Oxide-Dependent Inhibition of Cytochrome c Oxidase and Adenosine Triphosphate Synthesis. Endocrinol. 2009; 150(6), 2569-2576. DOI: 10.1210/en.2008-1342
  • 67. Ollila M, Piltonen T, Puukka K, Ruokonen A, Järvelin M & Tapanainen J. et al. Weight Gain and Dyslipidemia in Early Adulthood Associate with Polycystic Ovary Syndrome: Prospective Cohort Study. J Clin Endocrinol Metab. 2016; 101(2), 739-747. DOI: 10.1210/jc.2015-3543
  • 68. Morgan C, Jenkins-Jones S, Currie C & Rees D. Evaluation of Adverse Outcome in Young Women with Polycystic Ovary Syndrome Versus Matched, Reference Controls: A Retrospective, Observational Study. J Clin Endocrinol Metab. 2012; 97(9), 3251-3260. DOI: 10.1210/jc.2012-1690
  • 69. Joham A, Ranasinha S, Zoungas S, Moran L & Teede H. Gestational Diabetes and Type 2 Diabetes in Reproductive-Aged Women with Polycystic Ovary Syndrome. J Clin Endocrinol Metab. 2014; 99(3), E447-E452. DOI: 10.1210/jc.2013-2007
  • 70. Moran L, Misso M, Wild R & Norman R. Impaired glucose tolerance, type 2 diabetes and metabolic syndrome in polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2010; 16(4), 347-363. DOI: 10.1093/humupd/dmq001
  • 71. Legro R, Kunselman A, Dodson W & Dunaif A. Prevalence and Predictors of Risk for Type 2 Diabetes Mellitus and Impaired Glucose Tolerance in Polycystic Ovary Syndrome: A Prospective, Controlled Study in 254 Affected Women1. J Clin Endocrinol Metab. 1999; 84(1), 165-169. DOI: 10.1210/jcem.84.1.5393
  • 72. Norman R, Masters L, Milner C, Wang J, & Davies M. Relative risk of conversion from normoglycemia to impaired glucose tolerance or non-insulin dependent diabetes mellitus in polycystic ovarian syndrome. Hum Reprod. 2001; 16(9), 1995-1998. DOI: 10.1093/humrep/16.9.1995
  • 73. Wang E, Calderon-Margalit R, Cedars M, Daviglus M, Merkin S & Schreiner P. et al. Polycystic Ovary Syndrome and Risk for Long-Term Diabetes and Dyslipidemia. Obstet Gynecol. 2011; 117(1), 6-13. DOI: 10.1097/aog.0b013e31820209bb
  • 74. Baillargeon JP, Nestler JE, Ostlund RE, Apridonidze T, Diamanti-Kandarakis E. Greek hyperinsulinemic women, with or without polycystic ovary syndrome, display altered inositols metabolism. Hum Reprod. 2008; 23, 1439–1446. 10.1093/humrep/den097
  • 75. Lungu AO, Zadeh ES, Goodling A, Cochran E, Gorden P. Insulin resistance is a sufficient basis for hyperandrogenism in lipodystrophic women with polycystic ovarian syndrome. J Clin Endocrinol Metab. 2012; 97, 563–567. 10.1210/jc.2011-1896
  • 76. Kalme T, Koistinen H, Loukovaara M, Koistinen R, Leinonen P. Comparative studies on the regulation of insulin-like growth factor-binding protein-1 (IGFBP-1) and sex hormone-binding globulin (SHBG) production by insulin and insulin-like growth factors in human hepatoma cells. J Steroid Biochem Mol Biol. 2003; 86, 197–200. 10.1016/S0960-0760(03)00268-1
  • 77. Legro RS, Castracane VD, Kauffman RP. Detecting insulin resistance in polycystic ovary syndrome: purposes and pitfalls. Obstet Gynecol Surv. 2004; 59, 141–154. 10.1097/01.OGX.0000109523.25076.E2
  • 78. Nawrocka-Rutkowska J, Ciecwiez S, Marciniak A, Brodowska A, Wisniewska B, Kotlega D, et al. Insulin resistance assessment in patients with polycystic ovary syndrome using different diagnostic criteria–impact of metformin treatment. Ann Agric Environ Med. 2013; 20, 528–532.
  • 79. Misso M, Boyle J, Norman R, Teede H. Development of evidenced-based guidelines for PCOS and implications for community health. Semin Reprod Med. 2014; 32, 230–240. 10.1055/s-0034-1371095
  • 80. Legro RS, Arslanian SA, Ehrmann DA, Hoeger KM, Murad MH, Pasquali R, et al. Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2013; 98, 4565–4592. 10.1210/jc.2013-2350
  • 81. Teede HJ, Misso ML, Deeks AA, Moran LJ, Stuckey BG, Wong JL, et al. Assessment and management of polycystic ovary syndrome: summary of an evidence-based guideline. Med J Aust. 2011; 195, S65–S112. 10.5694/mja11.10915
  • 82. Norman RJ, Dewailly D, Legro RS, Hickey TE. Polycystic ovary syndrome. The Lancet 2007; 370, 685–697. 10.1016/S0140-6736(07)61345-2
  • 83. Pasquali R, Gambineri A, Pagotto U. The impact of obesity on reproduction in women with polycystic ovary syndrome. BJOG. 2006; 113, 1148–1159. 10.1111/j.1471-0528.2006.00990.x
  • 84. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002; 346, 393–403. 10.1056/NEJMoa012512
  • 85. Clark AM, Thornley B, Tomlinson L, Galletley C, Norman RJ. Weight loss in obese infertile women results in improvement in reproductive outcome for all forms of fertility treatment. Hum Reprod. 1998; 13, 1502–1505. 10.1093/humrep/13.6.1502
  • 86. Costello M, Shrestha B, Eden J, Sjoblom P, Johnson N. Insulin-sensitising drugs versus the combined oral contraceptive pill for hirsutism, acne and risk of diabetes, cardiovascular disease, and endometrial cancer in polycystic ovary syndrome. 2007; Cochrane Database Syst Rev 1: CD005552.
  • 87. Yildiz BO. Approach to the patient: contraception in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2015; 100, 794–802. 10.1210/jc.2014-3196
  • 88. Yildiz BO. Oral contraceptives in polycystic ovary syndrome: risk-benefit assessment. Semin Reprod Med. 2008b; 26, 111–120. 10.1055/s-2007-992931
  • 89. El Hayek S, Bitar L, Hamdar LH, Mirza FG, & Daoud G. PolyCystic Ovarian Syndrome: An Updated Overview. Front Physiol. 2016; 7, 124. doi:10.3389/fphys.2016.00124
  • 90. Spritzer PM, Motta AB, Sir-Petermann T, Diamanti-Kandarakis E. Novel strategies in the management of polycystic ovary syndrome. Minerva Endocrinol. 2015; 40, 195–212.
  • 91. Morin-Papunen LC, Koivunen RM, Ruokonen A, Martikainen HK. Metformin therapy improves the menstrual pattern with minimal endocrine and metabolic effects in women with polycystic ovary syndrome. Fertil Steril. 1998; 69, 691–696. 10.1016/S0015-0282(98)00011-9
  • 92. Bailey CJ, Turner RC. Metformin. N Engl J Med 1996; 334: 574–579
  • 93. Gilani A, Bashir S, Janbaz K & Shah A. Presence of cholinergic and calcium channel blocking activities explains the traditional use of Hibiscus rosasinensis in constipation and diarrhoea. J Ethnopharmacol. 2005; 102(2), 289-294. DOI: 10.1016/j.jep.2005.07.023
  • 94. Gopalakrishnan L, Doriya K & Kumar D. Moringa oleifera: A review on nutritive importance and its medicinal application. Food Sci Human Wellness, 2016; 5(2), 49-56. DOI: 10.1016/j.fshw.2016.04.001
  • 95. Wang Z, Zhai D, Zhang D, Bai L, Yao R & Yu J. et al. Quercetin Decreases Insulin Resistance in a Polycystic Ovary Syndrome Rat Model by Improving Inflammatory Microenvironment. Reprod Sci. 2016; 24(5), 682-690. DOI: 10.1177/1933719116667218
  • 96. Bailey CJ, Turner RC. Metformin. N Engl J Med 1996; 334: 574–579
  • 97. Velazquez EM, Mendoza S, Hamer T, Sosa F, Glueck CJ. Metformin therapy in polycystic ovary syndrome reduces hyperinsulinemia, insulin resistance, hyperandrogenemia, and systolic blood pressure, while facilitating normal menses and pregnancy. Metabolism. 1994; 43, 647–654. 10.1016/0026-0495(94)90209-7
  • 98. Pau CT, Keefe C, Duran J, Welt CK. Metformin improves glucose effectiveness, not insulin sensitivity: predicting treatment response in women with polycystic ovary syndrome in an open-label, interventional study. J Clin Endocrinol Metab. 2014; 99, 1870–1878. 10.1210/jc.2013-4021
  • 99. Misitzis A, Cunha PR, Kroumpouzos G. Skin disease related to metabolic syndrome in women. Int J Womens Dermatol. 2019 Jul 4;5(4):205-212. eCollection 2019 Sep. Review. PubMed PMID: 31700973.
  • 100. Ehrmann DA, Cavaghan MK, Imperial J, Sturis J, Rosenfield RL, Polonsky KS. Effects of metformin on insulin secretion, insulin action, and ovarian steroidogenesis in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 1997; 82, 524–530. 10.1210/jc.82.2.524
  • 101. Koivunen RM, Morin-Papunen LC, Ruokonen A, Tapanainen JS, Martikainen HK. Ovarian steroidogenic response to human chorionic gonadotrophin in obese women with polycystic ovary syndrome: effect of metformin. Hum Reprod. 2001 Dec;16(12):2546-51. doi: 10.1093/humrep/16.12.2546. PMID: 11726572.
  • 102. Açbay O, Gündoğdu S. Can metformin reduce insulin resistance in polycystic ovary syndrome? Fertil Steril. 1996; 65, 946–949.
  • 103. Huang Y, Sun J, Wang X, Tao X, Wang H, & Tan, W. Asymptomatic chronic gastritis decreases metformin tolerance in patients with type 2 diabetes. J Clinic Pharm Therapeutics, 2015; 40(4), 461-465.
  • 104. Soeprijanto B, Assegaf JH. Mekanisme peningka-tan heat shock protein-70 PADA kanker payudara tikus yang diradiasi, pascapemberian ekstrak meniran (phyllanthusniruri)(mechanism of increasing of Hsp-70 on irradiated rat breast cancer, due to application of extract of phyllanthus nir. J Vet. 2014; 15(3), 330-336
  • 105. Lashen H. (2010). Role of metformin in the management of polycystic ovary syndrome. Therapeut Adv Endocrinol Metabol. 2010; 1(3), 117-128.
  • 106. Majuri A, Santaniemi M, Rautio K, Kunnari A, Vartiainen J, Ruokonen A, et al. Rosiglitazone treatment increases plasma levels of adiponectin and decreases levels of resistin in overweight women with PCOS: a randomized placebo-controlled study. Eur J Endocrinol. 156, 263–269. 2007; 10.1530/eje.1.02331
  • 107. Lee EJ, Marcy TR. The impact of pioglitazone on bladder cancer and cardiovascular events. Consult Pharm. 2014; 29, 555–558. 10.4140/TCP.n.2014.555
  • 108. Levin D, Bell S, Sund R, Hartikainen SA, Tuomilehto J, Pukkala E, et al. Pioglitazone and bladder cancer risk: a multipopulation pooled, cumulative exposure analysis. Diabetologia. 2015; 58, 493–504. 10.1007/s00125-014-3456-9
  • 109. Genazzani AD, Prati A, Santagni S, Ricchieri F, Chierchia E, Rattighieri E, et al. Differential insulin response to myo-inositol administration in obese polycystic ovary syndrome patients. Gynecol Endocrinol. 2012; 28, 969–973. 10.3109/09513590.2012.685205
  • 110. Morgante G, Cappelli V, Di Sabatino A, Massaro MG, De Leo V. Polycystic ovary syndrome (PCOS) and hyperandrogenism: the role of a new natural association. Minerva Ginecol. 2015; 67, 457–463.
  • 111. Papaleo E, Unfer V, Baillargeon JP, Fusi F, Occhi F, De Santis L. Myo-inositol may improve oocyte quality in intracytoplasmic sperm injection cycles. A prospective, controlled, randomized trial. Fertil Steril. 2009; 91, 1750–1754. 10.1016/j.fertnstert.2008.01.088
  • 112. Sortino MA, Salomone S, Carruba MO, Drago F. Polycystic Ovary Syndrome: Insights into the Therapeutic Approach with Inositols. Front Pharmacol. 2017;8:341. Published 2017 Jun 8. doi:10.3389/fphar.2017.00341
  • 113. Rago R, Marcucci I, Leto G, Caponecchia L, Salacone P, Bonanni P, et al. Effect of myo-inositol and alpha-lipoic acid on oocyte quality in polycystic ovary syndrome non-obese women undergoing in vitro fertilization: a pilot study. J Biol Regul Homeost Agents 2015; 29, 913–923.
  • 114. Nordio M, Proietti E. The combined therapy with myo-inositol and D-chiro-inositol reduces the risk of metabolic disease in PCOS overweight patients compared to myo-inositol supplementation alone. Eur Rev Med Pharmacol Sci. 2012; 16, 575–581.
  • 115. Ganie MA, Khurana ML, Eunice M, Gupta N, Gulati M, Dwivedi SN, et al. Comparison of efficacy of spironolactone with metformin in the management of polycystic ovary syndrome: an open-labeled study. J Clin Endocrinol Metab.2004; 89, 2756–2762. 10.1210/jc.2003-031780
  • 116. Ganie M, Khurana M, Nisar S, Shah P, Shah Z, Kulshrestha B et al. Improved Efficacy of Low-Dose Spironolactone and Metformin Combination Than Either Drug Alone in the Management of Women With Polycystic Ovary Syndrome (PCOS): A Six-Month, Open-Label Randomized Study. J Clin Endocrinol Metab. 2013;98(9):3599-3607.
  • 117. Zulian E, Sartorato P, Benedini S, Baro G, Armanini D, Mantero F et al. Spironolactone in the treatment of polycystic ovary syndrome: Effects on clinical features, insulin sensitivity and lipid profile. J Endocrinolo Invest. 2005;28(3):49-53.
  • 118. Cedars MI. Polycystic ovary syndrome: what is it and how should we treat it? J Pediatr. 2004; 144, 4–6. 10.1016/j.jpeds.2003.10.032
  • 119. Pfeifer SM, Dayal M. Treatment of the adolescent patient with polycystic ovary syndrome. Obstet Gynecol Clin North Am. 2003; 30, 337–352. 10.1016/S0889-8545(03)00028-7
  • 120. Gilani A, Bashir S, Janbaz K & Shah A. Presence of cholinergic and calcium channel blocking activities explains the traditional use of Hibiscus rosasinensis in constipation and diarrhoea. J Ethnopharmacol. 2005; 102(2), 289-294. DOI: 10.1016/j.jep.2005.07.023
  • 121. Gopalakrishnan L, Doriya K & Kumar D. Moringa oleifera: A review on nutritive importance and its medicinal application. Food Sci Human Wellness, 2016; 5(2), 49-56. DOI: 10.1016/j.fshw.2016.04.001
  • 122. Wang Z, Zhai D, Zhang D, Bai L, Yao R & Yu J. et al. Quercetin Decreases Insulin Resistance in a Polycystic Ovary Syndrome Rat Model by Improving Inflammatory Microenvironment. Reprod Sci. 2106; 24(5), 682-690. DOI: 10.1177/1933719116667218
  • 123. Juźwiak S, Wójcicki J, Mokrzycki K, et al. Effect of quercetin on experimental hyperlipidemia and atherosclerosis in rabbits. Pharmacol Rep. 2005; 57(5):604-609. https://pubmed.ncbi.nlm.nih.gov/16227643/
  • 124. Zhai H, Wu H, Xu H, Weng P, Xia F, Chen Y & Lu, Y. Trace glucose and lipid metabolism in high androgen and high-fat diet induced polycystic ovary syndrome rats. Reprod Biol Endocrinol. 2012; 10(1), 5. DOI: 10.1186/1477-7827-10-5
  • 125. Shah K & Patel S. (2015). Phosphatidylinositide 3-kinase inhibition: A new potential target for the treatment of polycystic ovarian syndrome. Pharmaceut Biol. 2015; 54(6), 975-983. DOI: 10.3109/13880209.2015.1091482
  • 126. Volpi E, Lieberman S, Ferrer D, Gilkison C, Rasmussen B, Nagamani M & Urban R. The Relationships Between Testosterone, Body Composition, and Insulin Resistance: A lesson from a case of extreme hyperandrogenism. Diabetes Care. 2005; 28(2), 429-432. DOI: 10.2337/diacare.28.2.429
  • 127. Amelia D, Santoso B, Purwanto B, Miftahussurur M, Joewono H & Budiono. Effects of Moringa oleifera on Insulin Levels and Folliculogenesis in Polycystic Ovary Syndrome Model with Insulin Resistance. Immunol Endocr Metab Agents Med Chem. 2018; 18(1), 22-30. DOI: 10.2174/1871522218666180426100754
  • 128. Paramanya A, Jha P, Ali A. 2019. Bioactive compounds in Spirulina sp.: Applications and potential health effects. In Next Generation research in Aquaculture, J K Sundaray and M A Rather (Eds.) Narendra Publishing House, Delhi. Pp. 197-218.
  • 129. Sotiroudis T & Sotiroudis G. Health aspects of Spirulina (Arthrospira) microalga food supplement. J Serb Chem Soc. 2013; 78(3), 395-405. DOI: 10.2298/jsc121020152s
  • 130. Wan D, Wu Q & Kuča K. Spirulina. Nutraceuticals. 2016; 569-583. DOI: 10.1016/b978-0-12-802147-7.00042-5
  • 131. Deng R & Chow T. Hypolipidemic, Antioxidant, and Antiinflammatory Activities of Microalgae Spirulina. Cardiovascular Therapeutics. 2010; 28(4), e33-e45. DOI: 10.1111/j.1755-5922.2010.00200.x
  • 132. Kato T, Takemoto K, Katayama H & Kuwabara Y. Eiyo To Shokuryo. 1984; 37(4), 323-332. DOI: 10.4327/jsnfs.37.323
  • 133. Blé-Castillo J, Rodrıguez-Hernández A, Miranda-Zamora R, Juárez-Oropza, M & Dıaz-Zagoya J. Arthrospira maxima prevents the acute fatty liver induced by the administration of simvastatin, ethanol and a hypercholesterolemic diet to mice. Life Sci. 2002; 70(22), 2665-2673. DOI: 10.1016/s0024-3205(02)01512-6
  • 134. Mani U, Desai S & Iyer U. Studies on the Long-Term Effect of Spirulina Supplementation on Serum Lipid Profile and Glycated Proteins in NIDDM Patients. J Nutraceut Funct Med Food. 2000; 2(3), 25-32. DOI: 10.1300/j133v02n03_03
  • 135. Parikh P, Mani U & Iyer U. Role of Spirulina in the Control of Glycemia and Lipidemia in Type 2 Diabetes Mellitus. J Med Food. 2001; 4(4), 193-199. DOI: 10.1089/10966200152744463
  • 136. Lee E, Park J, Choi Y, Huh K & Kim W. A randomized study to establish the effects of spirulina in type 2 diabetes mellitus patients. Nutri Res Practice. 2008; 2(4), 295. DOI: 10.4162/nrp.2008.2.4.295
  • 137. Kaur K, Sachdeva R & Grover K. Effect of supplementation of Spirulina on blood glucose and lipid profile of the non-insulin dependent diabetic male subjects. J Dairying, Foods Home Sci. 2008; 27(3and4), 202-208.
  • 138. Samuels R, Mani U, Iyer U & Nayak U. Hypocholesterolemic Effect ofSpirulinain Patients with Hyperlipidemic Nephrotic Syndrome. J Med Food. 2002; 5(2), 91-96. DOI: 10.1089/109662002760178177
  • 139. Mazokopakis E, Karefilakis C, Tsartsalis A, Milkas A & Ganotakis E. Acute rhabdomyolysis caused by Spirulina (Arthrospira platensis). Phytomedicine. 2008; 15(6-7), 525-527. DOI: 10.1016/j.phymed.2008.03.003
  • 140. Ali A & Paramanya A. Antidiabetic and Antiglycating properties of Spirulina platensis. 2019; MESMAP–5 PROCEEDINGS BOOK, 79.
  • 141. Shaikh N, Dadachanji R & Mukherjee S. Genetic Markers of Polycystic Ovary Syndrome: Emphasis on Insulin Resistance. Intl J Med Genetics. 2014; 1-10. DOI: 10.1155/2014/478972

Compendium of polycystic ovarian syndrome and its relevance in glycation and diabetes

Year 2022, Volume: 39 Issue: 1, 256 - 268, 01.01.2022

Abstract

Polycystic ovarian syndrome (PCOS) is one of the most common endocrine and reproductive disorders observed in women. Its pathophysiology indicates its involvement in plenitude of diseases and/ or disorders. Although the absolute cause of PCOS has not been established, its prevalence in diabetic patients is noteworthy. Glycation and insulin resistance being key factors in diabetes, the present review tries to study their correlation with PCOS. Amongst the available drugs, four commonly prescribed drugs namely, metformin, inositol, thiazolidinediones, and spironolactone have been discussed. The current review also provides insights about usage of M. oleifera and S. platensis as a potential therapeutic agent for symptomatic relief of PCOS.

References

  • 1. Nestler J. Insulin regulation of human ovarian androgens. Hum Reprod. 12(suppl 1), 1997; 53-62. DOI: 10.1093/humrep/12.suppl_1.53
  • 2. Schoemaker J. Neuroendocrine control in polycystic ovary-like syndrome. Gynec Endocrino. 1991; 5(4), 277-288. DOI: 10.3109/09513599109028449
  • 3. Diamanti-Kandarakis E & Piperi C. Genetics of polycystic ovary syndrome: searching for the way out of the labyrinth. Hum Reprod Update. 2005; 11(6), 631-643. DOI: 10.1093/humupd/dmi025
  • 4. Xita N, Georgiou I, & Tsatsoulis A. The genetic basis of polycystic ovary syndrome. Eur J Endocrinol. 2002; 717-725. DOI: 10.1530/eje.0.1470717
  • 5. Diamanti-Kandarakis E & Dunaif A. Insulin Resistance and the Polycystic Ovary Syndrome Revisited: An Update on Mechanisms and Implications. Endocrine Reviews. 2012; 33(6), 981-1030. DOI: 10.1210/er.2011-1034
  • 6. Diamanti-Kandarakis E & Dunaif A. PolyCystic Ovarian Syndrome: An Updated Overview. Front Physiol. 2012; 7, 124. https://doi.org/10.3389/fphys.2016.00124
  • 7. Bajuk Studen K & Pfeifer M. Cardiometabolic risk in polycystic ovary syndrome. Endocr Connect. 2018; 7(7), R238-R251. DOI: 10.1530/ec-18-0129
  • 8. Wang, F., Wang, S., Zhang, Z., Lin, Q., Liu, Y., & Xiao, Y. et al. Defective insulin signaling and the protective effects of dimethyldiguanide during follicular development in the ovaries of polycystic ovary syndrome. Mol Med Rep. 2017; 16(6), 8164-8170. DOI: 10.3892/mmr.2017.7678
  • 9. Dunaif A, Xia J, Book C, Schenker E & Tang Z. Excessive insulin receptor serine phosphorylation in cultured fibroblasts and in skeletal muscle. A potential mechanism for insulin resistance in the polycystic ovary syndrome. J Clin Invest. 1995; 96 (2), 801-810. DOI: 10.1172/jci118126
  • 10. Dunaif A, Segal K, Shelley D, Green G, Dobrjansky A & Licholai T. Evidence for distinctive and intrinsic defects in insulin action in Polycystic Ovary Syndrome. Diabetes. 1992; 41(10), 1257-1266. DOI: 10.2337/diab.41.10.1257
  • 11. Venkatesan A. Insulin Resistance in Polycystic Ovary Syndrome: Progress and Paradoxes. Recent Prog Horm Res. 2001; 56(1), 295-308. DOI: 10.1210/rp.56.1.295
  • 12. Sano H, Higashi T, Matsumoto K, Melkko J, Jinnouchi Y, & Ikeda K. et al. Insulin Enhances Macrophage Scavenger Receptor-mediated Endocytic Uptake of Advanced Glycation End Products. J Biol Chem. 1998; 273(15), 8630-8637. DOI: 10.1074/jbc.273.15.8630
  • 13. Diamanti-Kandarakis E, Piperi C, Kalofoutis A & Creatsas G. Increased levels of serum advanced glycation end-products in women with polycystic ovary syndrome. Clin Endocrinol. 2005; 62(1), 37-43. DOI: 10.1111/j.1365-2265.2004.02170.x
  • 14. Ali A, Paramanya A, Prairna, Doukani K. Zehra S. Antioxidants in glycation related diseases. In Oxidative Stress and Antioxidant Defense: Biomedical Value in Health and Diseases, Md. Sahab Uddin and Aman Upaganlawar (Eds.). NOVA Science Publishers, Hauppauge, USA.2019. Pp. 465-488
  • 15. Ahmed N. Advanced glycation end products—role in pathology of diabetic complications. Diabetes Res Clin Pract. 2005; 67(1), 3-21. DOI: 10.1016/j.diabres.2004.09.004
  • 16. Draznin B. Molecular Mechanisms of Insulin Resistance: Serine Phosphorylation of Insulin Receptor Substrate-1 and Increased Expression of p85: The Two Sides of a Coin. Diabetes. 2006; 55(8), 2392-2397. DOI: 10.2337/db06-0391
  • 17. Ueki K, Algenstaedt P, Mauvais-Jarvis F, & Kahn C. Positive and Negative Regulation of Phosphoinositide 3-Kinase-Dependent Signaling Pathways by Three Different Gene Products of the p85α Regulatory Subunit. Mol Cell Biol. 2000; 20(21), 8035-8046. DOI: 10.1128/mcb.20.21.8035-8046.2000
  • 18. Terauchi Y, Tsuji Y, Satoh S, Minoura H, Murakami K, & Okuno A. et al. Increased insulin sensitivity and hypoglycaemia in mice lacking the p85α subunit of phosphoinositide 3–kinase. Nat Genet. 1999; 21(2), 230-235. DOI: 10.1038/6023
  • 19. Giorgino F, Pedrini M, Matera L & Smith R. Specific Increase in p85α Expression in Response to Dexamethasone Is Associated with Inhibition of Insulin-like Growth Factor-I Stimulated Phosphatidylinositol 3-Kinase Activity in Cultured Muscle Cells. J Biol Chem. 1997; 272(11), 7455-7463. DOI: 10.1074/jbc.272.11.7455
  • 20. Cornier M, Bessesen D, Gurevich I, Leitner J & Draznin B. Nutritional upregulation of p85α expression is an early molecular manifestation of insulin resistance. Diabetologia. 2006; 49(4), 748-754. DOI: 10.1007/s00125-006-0148-0
  • 21. Bandyopadhyay G, Yu J, Ofrecio J & Olefsky J. Increased p85/55/50 Expression and Decreased Phosphatidylinositol 3-Kinase Activity in Insulin-Resistant Human Skeletal Muscle. Diabetes. 2005; 54(8), 2351-2359. DOI: 10.2337/diabetes.54.8.2351
  • 22. Saini V. Molecular mechanisms of insulin resistance in type 2 diabetes mellitus. World J Diabetes. 2010; 1(3):68-75. DOI:10.4239/wjd.v1.i3.68
  • 23. Qiao LY, Goldberg JL, Russell JC & Sun XJ. Identification of enhanced serine kinase activity in insulin resistance. J Biol Chem. 1999; 274(15), 10625-10632. DOI: 10.1074/jbc.274.15.10625
  • 24. Samuel V, & Shulman G. Mechanisms for Insulin Resistance: Common Threads and Missing Links. Cell. 2012; 148(5), 852-871. DOI: 10.1016/j.cell.2012.02.017
  • 25. Samuel V, Petersen K & Shulman G. Lipid-induced insulin resistance: unravelling the mechanism. The Lancet. 2010; 375(9733), 2267-2277. DOI: 10.1016/s0140-6736(10)60408-4
  • 26. Itani S, Ruderman N, Schmieder F & Boden, G. Lipid-Induced Insulin Resistance in Human Muscle Is Associated With Changes in Diacylglycerol, Protein Kinase C, and I B-. Diabetes. 2002; 51(7), 2005-2011. DOI: 10.2337/diabetes.51.7.2005
  • 27. Garvey WT, Maianu L, Zhu JH, Brechtel-Hook G, Wallace P & Baron AD. Evidence for defects in the trafficking and translocation of GLUT4 glucose transporters in skeletal muscle as a cause of human insulin resistance. J Clin Invest. 1998; 101(11), 2377–2386. https://doi.org/10.1172/JCI1557
  • 28. Fabbrini E, Magkos F, Mohammed B, Pietka T, Abumrad N & Patterson B. et al. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc Natl Acad Sci USA. 2009 106(36), 15430-15435. DOI: 10.1073/pnas.0904944106
  • 29. Kaufman R. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 1999; 13(10), 1211-1233. DOI: 10.1101/gad.13.10.1211
  • 30. Dresner A, Laurent D, Marcucci M, Griffin M, Dufour S & Cline G. et al. Effects of free fatty acids on glucose transport and IRS-1–associated phosphatidylinositol 3-kinase activity. J Clin Invest. 1999; 103(2), 253-259. DOI: 10.1172/jci5001
  • 31. Kumar D, Ali A. 2019. Antiglycation and Antiaggregation potential of Thymoquinine. Nat Volat Essent Oils. 6 (1): 25-33
  • 32. Hodge J. Dehydrated Foods, Chemistry of Browning Reactions in Model Systems. J Agric Food Chem. 1953; 1(15), 928-943. DOI: 10.1021/jf60015a004
  • 33. Paul R & Bailey A. Glycation of collagen: the basis of its central role in the late complications of ageing and diabetes. Int J Biochem Cell Biol. 1996; 28(12), 1297-1310. DOI: 10.1016/s1357-2725(96)00079-9
  • 34. Thorpe S & Baynes J. Maillard reaction products in tissue proteins: New products and new perspectives. Amino Acids. 2003; 25(3-4), 275-281. DOI: 10.1007/s00726-003-0017-9
  • 35. Ali A, More T, Hoonjan A K, Sivakami S. 2017. Antiglycating potential of Acesulfame potassium: An artificial sweetener. App Physiol Nutr Metabol. 2017. 42(10):1054-1063. http://dx.doi.org/10.1139/apnm-2017-0119.
  • 36. Reddy S, Bichler J, Wells-Knecht K, Thorpe S & Baynes J. N.epsilon.-(Carboxymethyl)lysine Is a Dominant Advanced Glycation End Product (AGE) Antigen in Tissue Proteins. Biochem. 1995; 34(34), 10872-10878. DOI: 10.1021/bi00034a021
  • 37. Negre-Salvayre A, Coatrieux C, Ingueneau C & Salvayre R. Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. Br J Pharmacol. 2008; 153(1), 6-20. DOI: 10.1038/sj.bjp.0707395
  • 38. Moldogazieva N, Mokhosoev I, Mel’nikova T, Porozov Y & Terentiev A. Oxidative Stress and Advanced Lipoxidation and Glycation End Products (ALEs and AGEs) in Aging and Age-Related Diseases. Oxid Med Cell Longev. 2019; 1-14. DOI: 10.1155/2019/3085756
  • 39. Kim J & Choi Y. Dyslipidemia in women with polycystic ovary syndrome. Obstet Gynecol Sci. 2013; 56(3), 137. DOI: 10.5468/ogs.2013.56.3.137
  • 40. Rutkowska A & Diamanti-Kandarakis E. (2016). Do Advanced Glycation End Products (AGEs) Contribute to the Comorbidities of Polycystic Ovary Syndrome (PCOS)?. Curr Pharm Des. 2016; 22(36), 5558-5571. DOI: 10.2174/1381612822666160714094404
  • 41. Gkogkolou P & Böhm M. (2012). Advanced glycation end products: Key players in skin aging? Dermatoendocrinol. 2012; 4(3), 259–270. https://doi.org/10.4161/derm.22028
  • 42. Miyata T, Inagi R, Iida Y, Sato M, Yamada N & Oda O. et al. Involvement of beta 2-microglobulin modified with advanced glycation end products in the pathogenesis of hemodialysis-associated amyloidosis. Induction of human monocyte chemotaxis and macrophage secretion of tumor necrosis factor-alpha and interleukin-1. J Clin Invest. 1994; 93(2), 521-528. DOI: 10.1172/jci117002
  • 43. Bierhaus A, Humpert P, Morcos M, Wendt T, Chavakis T & Arnold B. et al. Understanding RAGE, the receptor for advanced glycation end products. J Mol Med. 2005; 83(11), 876-886. DOI: 10.1007/s00109-005-0688-7
  • 44. Xue M, Rabbani N, & Thornalley P. Glyoxalase in ageing. Semin Cell Dev Biol. 2011; 22(3), 293-301. DOI: 10.1016/j.semcdb.2011.02.013
  • 45. Chen L, Chen R, Wang H & Liang F. Mechanisms Linking Inflammation to Insulin Resistance. Int J Endocrinol. 2015; 1-9. DOI: 10.1155/2015/508409
  • 46. Tanaka N, Yonekura H, Yamagishi S, Fujimori H, Yamamoto Y, & Yamamoto H. (2000). The Receptor for Advanced Glycation End Products Is Induced by the Glycation Products Themselves and Tumor Necrosis Factor-α through Nuclear Factor-κB, and by 17β-Estradiol through Sp-1 in Human Vascular Endothelial Cells. J Biol Chem, 275(33), 25781-25790. DOI: 10.1074/jbc.m001235200
  • 47. Diamanti-Kandarakis E & Papavassiliou A. Molecular mechanisms of insulin resistance in polycystic ovary syndrome. Trends Mol Med. 2006; 12(7), 324-332. DOI: 10.1016/j.molmed.2006.05.006
  • 48. Baptiste, C., Battista, M., Trottier, A., & Baillargeon, J. Insulin and hyperandrogenism in women with polycystic ovary syndrome. J Steroid Biochem Mol Biol. 2010; 122(1-3), 42-52. doi: 10.1016/j.jsbmb.2009.12.010
  • 49. Schoemaker J. Neuroendocrine control in polycystic ovary-like syndrome. Gynecol Endocrinol. 1991; 5(4), 277-288. DOI: 10.3109/09513599109028449
  • 50. Fauser B, Tarlatzis B, Rebar R, Legro R, Balen A & Lobo R. et al. Consensus on women’s health aspects of polycystic ovary syndrome (PCOS): the Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Fertil Steril. 2012; 97(1), 28-38.e25. DOI: 10.1016/j.fertnstert.2011.09.024
  • 51. Kirschner M & Wayne Bardin C. Androgen production and metabolism in normal and virilized women. Metabolism. 1972; 21(7), 667-688. DOI: 10.1016/0026-0495(72)90090-x
  • 52. Balen A. The pathophysiology of polycystic ovary syndrome: trying to understand PCOS and its endocrinology. Best Pract Res Clin Obstet Gynaecol. 2004; 18(5), 685-706. DOI: 10.1016/j.bpobgyn.2004.05.004
  • 53. Zhang LH, Rodriguez H, Ohno S & Miller WL. Serine phosphorylation of human P450c17 increases 17, 20-lyase activity: implications for adrenarche and the polycystic ovary syndrome. Proc Natl Acad Sci USA. 1995; 92: 10619–10623. https://dx.doi.org/10.1073%2Fpnas.92.23.10619
  • 54. White D, Leigh A, Wilson C, Donaldson A & Franks S. Gonadotropin and gonadal steroid response to a single dose of a long-acting agonist of gonadotropin-releasing hormone in ovulatory and anovulatory women with polycystic ovary syndrome. Clin Endocrinol. 1995; 42(5), 475-481. DOI: 10.1111/j.1365-2265.1995.tb02665.x
  • 55. Sıklar Z, Berberoğlu M, Çamtosun E, & Kocaay P. Diagnostic Characteristics and Metabolic Risk Factors of Cases with Polycystic Ovary Syndrome during Adolescence. J Pediatr Adolesc Gynecol. 2015; 28(2), 78-83. DOI: 10.1016/j.jpag.2014.05.006
  • 56. Baillargeon J, Iuorno M & Nestler J. Insulin Sensitizers for Polycystic Ovary Syndrome. Clin Obstet Gynecol. 2003; 46(2), 325-340. DOI: 10.1097/00003081-200306000-00011
  • 57. Dunaif A. Hyperandrogenic anovulation (PCOS): A unique disorder of insulin action associated with an increased risk of non-insulin-dependent diabetes mellitus. Am J Med. 1995; 98(1), S33-S39. DOI: 10.1016/s0002-9343(99)80057-6
  • 58. Rathsman B, Rosfors S, Sjöholm Å & Nyström T. Early signs of atherosclerosis are associated with insulin resistance in non-obese adolescent and young adults with type 1 diabetes. Cardiovasc Diabetol. 2012; 11(1), 145. DOI: 10.1186/1475-2840-11-145
  • 59. Bhattacharya S & Jha A. Prevalence and risk of metabolic syndrome in adolescent Indian girls with polycystic ovary syndrome using the 2009 ‘joint interim criteria’. J Obstet Gynaecol Res. 2011; 37(10), 1303-1307. DOI: 10.1111/j.1447-0756.2010.01516.x
  • 60. Hart R, Doherty D, Mori T, Huang R, Norman R & Franks S. et al. Extent of metabolic risk in adolescent girls with features of polycystic ovary syndrome. Fertil Steril. 2011; 95(7), 2347-2353.e1. DOI: 10.1016/j.fertnstert.2011.03.001
  • 61. Lass N, Kleber M, Winkel K, Wunsch R & Reinehr T. Effect of Lifestyle Intervention on Features of Polycystic Ovarian Syndrome, Metabolic Syndrome, and Intima-Media Thickness in Obese Adolescent Girls. J Clin Endocrinol Metab. 2011; 96(11), 3533-3540. DOI: 10.1210/jc.2011-1609
  • 62. Garg D, Merhi Z. Relationship between Advanced Glycation End Products and Steroidogenesis in PCOS. Reprod Biol Endocrinol. 2016; 14(1):71. Published 2016 Oct 21. DOI:10.1186/s12958-016-0205-6
  • 63. Chatzigeorgiou A, Kandaraki E, Piperi C, Livadas S, Papavassiliou A & Koutsilieris, M. et al. Dietary glycotoxins affect scavenger receptor expression and the hormonal profile of female rats. J Endocrinol. 2013; 218(3), 331-337. DOI: 10.1530/joe-13-0175
  • 64. Franks S. Polycystic Ovary Syndrome. N Engl J Med. 1995; 333(13), 853-861. DOI: 10.1056/nejm199509283331307
  • 65. Rabbani N & Thornalley P. Dicarbonyl stress in cell and tissue dysfunction contributing to ageing and disease. Biochem Biophys Res Commun. 2015; 458(2), 221-226. DOI: 10.1016/j.bbrc.2015.01.140
  • 66. Zhao Z, Zhao C, Zhang X, Zheng F, Cai W, Vlassara H, & Ma Z. Advanced Glycation End Products Inhibit Glucose-Stimulated Insulin Secretion through Nitric Oxide-Dependent Inhibition of Cytochrome c Oxidase and Adenosine Triphosphate Synthesis. Endocrinol. 2009; 150(6), 2569-2576. DOI: 10.1210/en.2008-1342
  • 67. Ollila M, Piltonen T, Puukka K, Ruokonen A, Järvelin M & Tapanainen J. et al. Weight Gain and Dyslipidemia in Early Adulthood Associate with Polycystic Ovary Syndrome: Prospective Cohort Study. J Clin Endocrinol Metab. 2016; 101(2), 739-747. DOI: 10.1210/jc.2015-3543
  • 68. Morgan C, Jenkins-Jones S, Currie C & Rees D. Evaluation of Adverse Outcome in Young Women with Polycystic Ovary Syndrome Versus Matched, Reference Controls: A Retrospective, Observational Study. J Clin Endocrinol Metab. 2012; 97(9), 3251-3260. DOI: 10.1210/jc.2012-1690
  • 69. Joham A, Ranasinha S, Zoungas S, Moran L & Teede H. Gestational Diabetes and Type 2 Diabetes in Reproductive-Aged Women with Polycystic Ovary Syndrome. J Clin Endocrinol Metab. 2014; 99(3), E447-E452. DOI: 10.1210/jc.2013-2007
  • 70. Moran L, Misso M, Wild R & Norman R. Impaired glucose tolerance, type 2 diabetes and metabolic syndrome in polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2010; 16(4), 347-363. DOI: 10.1093/humupd/dmq001
  • 71. Legro R, Kunselman A, Dodson W & Dunaif A. Prevalence and Predictors of Risk for Type 2 Diabetes Mellitus and Impaired Glucose Tolerance in Polycystic Ovary Syndrome: A Prospective, Controlled Study in 254 Affected Women1. J Clin Endocrinol Metab. 1999; 84(1), 165-169. DOI: 10.1210/jcem.84.1.5393
  • 72. Norman R, Masters L, Milner C, Wang J, & Davies M. Relative risk of conversion from normoglycemia to impaired glucose tolerance or non-insulin dependent diabetes mellitus in polycystic ovarian syndrome. Hum Reprod. 2001; 16(9), 1995-1998. DOI: 10.1093/humrep/16.9.1995
  • 73. Wang E, Calderon-Margalit R, Cedars M, Daviglus M, Merkin S & Schreiner P. et al. Polycystic Ovary Syndrome and Risk for Long-Term Diabetes and Dyslipidemia. Obstet Gynecol. 2011; 117(1), 6-13. DOI: 10.1097/aog.0b013e31820209bb
  • 74. Baillargeon JP, Nestler JE, Ostlund RE, Apridonidze T, Diamanti-Kandarakis E. Greek hyperinsulinemic women, with or without polycystic ovary syndrome, display altered inositols metabolism. Hum Reprod. 2008; 23, 1439–1446. 10.1093/humrep/den097
  • 75. Lungu AO, Zadeh ES, Goodling A, Cochran E, Gorden P. Insulin resistance is a sufficient basis for hyperandrogenism in lipodystrophic women with polycystic ovarian syndrome. J Clin Endocrinol Metab. 2012; 97, 563–567. 10.1210/jc.2011-1896
  • 76. Kalme T, Koistinen H, Loukovaara M, Koistinen R, Leinonen P. Comparative studies on the regulation of insulin-like growth factor-binding protein-1 (IGFBP-1) and sex hormone-binding globulin (SHBG) production by insulin and insulin-like growth factors in human hepatoma cells. J Steroid Biochem Mol Biol. 2003; 86, 197–200. 10.1016/S0960-0760(03)00268-1
  • 77. Legro RS, Castracane VD, Kauffman RP. Detecting insulin resistance in polycystic ovary syndrome: purposes and pitfalls. Obstet Gynecol Surv. 2004; 59, 141–154. 10.1097/01.OGX.0000109523.25076.E2
  • 78. Nawrocka-Rutkowska J, Ciecwiez S, Marciniak A, Brodowska A, Wisniewska B, Kotlega D, et al. Insulin resistance assessment in patients with polycystic ovary syndrome using different diagnostic criteria–impact of metformin treatment. Ann Agric Environ Med. 2013; 20, 528–532.
  • 79. Misso M, Boyle J, Norman R, Teede H. Development of evidenced-based guidelines for PCOS and implications for community health. Semin Reprod Med. 2014; 32, 230–240. 10.1055/s-0034-1371095
  • 80. Legro RS, Arslanian SA, Ehrmann DA, Hoeger KM, Murad MH, Pasquali R, et al. Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2013; 98, 4565–4592. 10.1210/jc.2013-2350
  • 81. Teede HJ, Misso ML, Deeks AA, Moran LJ, Stuckey BG, Wong JL, et al. Assessment and management of polycystic ovary syndrome: summary of an evidence-based guideline. Med J Aust. 2011; 195, S65–S112. 10.5694/mja11.10915
  • 82. Norman RJ, Dewailly D, Legro RS, Hickey TE. Polycystic ovary syndrome. The Lancet 2007; 370, 685–697. 10.1016/S0140-6736(07)61345-2
  • 83. Pasquali R, Gambineri A, Pagotto U. The impact of obesity on reproduction in women with polycystic ovary syndrome. BJOG. 2006; 113, 1148–1159. 10.1111/j.1471-0528.2006.00990.x
  • 84. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002; 346, 393–403. 10.1056/NEJMoa012512
  • 85. Clark AM, Thornley B, Tomlinson L, Galletley C, Norman RJ. Weight loss in obese infertile women results in improvement in reproductive outcome for all forms of fertility treatment. Hum Reprod. 1998; 13, 1502–1505. 10.1093/humrep/13.6.1502
  • 86. Costello M, Shrestha B, Eden J, Sjoblom P, Johnson N. Insulin-sensitising drugs versus the combined oral contraceptive pill for hirsutism, acne and risk of diabetes, cardiovascular disease, and endometrial cancer in polycystic ovary syndrome. 2007; Cochrane Database Syst Rev 1: CD005552.
  • 87. Yildiz BO. Approach to the patient: contraception in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2015; 100, 794–802. 10.1210/jc.2014-3196
  • 88. Yildiz BO. Oral contraceptives in polycystic ovary syndrome: risk-benefit assessment. Semin Reprod Med. 2008b; 26, 111–120. 10.1055/s-2007-992931
  • 89. El Hayek S, Bitar L, Hamdar LH, Mirza FG, & Daoud G. PolyCystic Ovarian Syndrome: An Updated Overview. Front Physiol. 2016; 7, 124. doi:10.3389/fphys.2016.00124
  • 90. Spritzer PM, Motta AB, Sir-Petermann T, Diamanti-Kandarakis E. Novel strategies in the management of polycystic ovary syndrome. Minerva Endocrinol. 2015; 40, 195–212.
  • 91. Morin-Papunen LC, Koivunen RM, Ruokonen A, Martikainen HK. Metformin therapy improves the menstrual pattern with minimal endocrine and metabolic effects in women with polycystic ovary syndrome. Fertil Steril. 1998; 69, 691–696. 10.1016/S0015-0282(98)00011-9
  • 92. Bailey CJ, Turner RC. Metformin. N Engl J Med 1996; 334: 574–579
  • 93. Gilani A, Bashir S, Janbaz K & Shah A. Presence of cholinergic and calcium channel blocking activities explains the traditional use of Hibiscus rosasinensis in constipation and diarrhoea. J Ethnopharmacol. 2005; 102(2), 289-294. DOI: 10.1016/j.jep.2005.07.023
  • 94. Gopalakrishnan L, Doriya K & Kumar D. Moringa oleifera: A review on nutritive importance and its medicinal application. Food Sci Human Wellness, 2016; 5(2), 49-56. DOI: 10.1016/j.fshw.2016.04.001
  • 95. Wang Z, Zhai D, Zhang D, Bai L, Yao R & Yu J. et al. Quercetin Decreases Insulin Resistance in a Polycystic Ovary Syndrome Rat Model by Improving Inflammatory Microenvironment. Reprod Sci. 2016; 24(5), 682-690. DOI: 10.1177/1933719116667218
  • 96. Bailey CJ, Turner RC. Metformin. N Engl J Med 1996; 334: 574–579
  • 97. Velazquez EM, Mendoza S, Hamer T, Sosa F, Glueck CJ. Metformin therapy in polycystic ovary syndrome reduces hyperinsulinemia, insulin resistance, hyperandrogenemia, and systolic blood pressure, while facilitating normal menses and pregnancy. Metabolism. 1994; 43, 647–654. 10.1016/0026-0495(94)90209-7
  • 98. Pau CT, Keefe C, Duran J, Welt CK. Metformin improves glucose effectiveness, not insulin sensitivity: predicting treatment response in women with polycystic ovary syndrome in an open-label, interventional study. J Clin Endocrinol Metab. 2014; 99, 1870–1878. 10.1210/jc.2013-4021
  • 99. Misitzis A, Cunha PR, Kroumpouzos G. Skin disease related to metabolic syndrome in women. Int J Womens Dermatol. 2019 Jul 4;5(4):205-212. eCollection 2019 Sep. Review. PubMed PMID: 31700973.
  • 100. Ehrmann DA, Cavaghan MK, Imperial J, Sturis J, Rosenfield RL, Polonsky KS. Effects of metformin on insulin secretion, insulin action, and ovarian steroidogenesis in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 1997; 82, 524–530. 10.1210/jc.82.2.524
  • 101. Koivunen RM, Morin-Papunen LC, Ruokonen A, Tapanainen JS, Martikainen HK. Ovarian steroidogenic response to human chorionic gonadotrophin in obese women with polycystic ovary syndrome: effect of metformin. Hum Reprod. 2001 Dec;16(12):2546-51. doi: 10.1093/humrep/16.12.2546. PMID: 11726572.
  • 102. Açbay O, Gündoğdu S. Can metformin reduce insulin resistance in polycystic ovary syndrome? Fertil Steril. 1996; 65, 946–949.
  • 103. Huang Y, Sun J, Wang X, Tao X, Wang H, & Tan, W. Asymptomatic chronic gastritis decreases metformin tolerance in patients with type 2 diabetes. J Clinic Pharm Therapeutics, 2015; 40(4), 461-465.
  • 104. Soeprijanto B, Assegaf JH. Mekanisme peningka-tan heat shock protein-70 PADA kanker payudara tikus yang diradiasi, pascapemberian ekstrak meniran (phyllanthusniruri)(mechanism of increasing of Hsp-70 on irradiated rat breast cancer, due to application of extract of phyllanthus nir. J Vet. 2014; 15(3), 330-336
  • 105. Lashen H. (2010). Role of metformin in the management of polycystic ovary syndrome. Therapeut Adv Endocrinol Metabol. 2010; 1(3), 117-128.
  • 106. Majuri A, Santaniemi M, Rautio K, Kunnari A, Vartiainen J, Ruokonen A, et al. Rosiglitazone treatment increases plasma levels of adiponectin and decreases levels of resistin in overweight women with PCOS: a randomized placebo-controlled study. Eur J Endocrinol. 156, 263–269. 2007; 10.1530/eje.1.02331
  • 107. Lee EJ, Marcy TR. The impact of pioglitazone on bladder cancer and cardiovascular events. Consult Pharm. 2014; 29, 555–558. 10.4140/TCP.n.2014.555
  • 108. Levin D, Bell S, Sund R, Hartikainen SA, Tuomilehto J, Pukkala E, et al. Pioglitazone and bladder cancer risk: a multipopulation pooled, cumulative exposure analysis. Diabetologia. 2015; 58, 493–504. 10.1007/s00125-014-3456-9
  • 109. Genazzani AD, Prati A, Santagni S, Ricchieri F, Chierchia E, Rattighieri E, et al. Differential insulin response to myo-inositol administration in obese polycystic ovary syndrome patients. Gynecol Endocrinol. 2012; 28, 969–973. 10.3109/09513590.2012.685205
  • 110. Morgante G, Cappelli V, Di Sabatino A, Massaro MG, De Leo V. Polycystic ovary syndrome (PCOS) and hyperandrogenism: the role of a new natural association. Minerva Ginecol. 2015; 67, 457–463.
  • 111. Papaleo E, Unfer V, Baillargeon JP, Fusi F, Occhi F, De Santis L. Myo-inositol may improve oocyte quality in intracytoplasmic sperm injection cycles. A prospective, controlled, randomized trial. Fertil Steril. 2009; 91, 1750–1754. 10.1016/j.fertnstert.2008.01.088
  • 112. Sortino MA, Salomone S, Carruba MO, Drago F. Polycystic Ovary Syndrome: Insights into the Therapeutic Approach with Inositols. Front Pharmacol. 2017;8:341. Published 2017 Jun 8. doi:10.3389/fphar.2017.00341
  • 113. Rago R, Marcucci I, Leto G, Caponecchia L, Salacone P, Bonanni P, et al. Effect of myo-inositol and alpha-lipoic acid on oocyte quality in polycystic ovary syndrome non-obese women undergoing in vitro fertilization: a pilot study. J Biol Regul Homeost Agents 2015; 29, 913–923.
  • 114. Nordio M, Proietti E. The combined therapy with myo-inositol and D-chiro-inositol reduces the risk of metabolic disease in PCOS overweight patients compared to myo-inositol supplementation alone. Eur Rev Med Pharmacol Sci. 2012; 16, 575–581.
  • 115. Ganie MA, Khurana ML, Eunice M, Gupta N, Gulati M, Dwivedi SN, et al. Comparison of efficacy of spironolactone with metformin in the management of polycystic ovary syndrome: an open-labeled study. J Clin Endocrinol Metab.2004; 89, 2756–2762. 10.1210/jc.2003-031780
  • 116. Ganie M, Khurana M, Nisar S, Shah P, Shah Z, Kulshrestha B et al. Improved Efficacy of Low-Dose Spironolactone and Metformin Combination Than Either Drug Alone in the Management of Women With Polycystic Ovary Syndrome (PCOS): A Six-Month, Open-Label Randomized Study. J Clin Endocrinol Metab. 2013;98(9):3599-3607.
  • 117. Zulian E, Sartorato P, Benedini S, Baro G, Armanini D, Mantero F et al. Spironolactone in the treatment of polycystic ovary syndrome: Effects on clinical features, insulin sensitivity and lipid profile. J Endocrinolo Invest. 2005;28(3):49-53.
  • 118. Cedars MI. Polycystic ovary syndrome: what is it and how should we treat it? J Pediatr. 2004; 144, 4–6. 10.1016/j.jpeds.2003.10.032
  • 119. Pfeifer SM, Dayal M. Treatment of the adolescent patient with polycystic ovary syndrome. Obstet Gynecol Clin North Am. 2003; 30, 337–352. 10.1016/S0889-8545(03)00028-7
  • 120. Gilani A, Bashir S, Janbaz K & Shah A. Presence of cholinergic and calcium channel blocking activities explains the traditional use of Hibiscus rosasinensis in constipation and diarrhoea. J Ethnopharmacol. 2005; 102(2), 289-294. DOI: 10.1016/j.jep.2005.07.023
  • 121. Gopalakrishnan L, Doriya K & Kumar D. Moringa oleifera: A review on nutritive importance and its medicinal application. Food Sci Human Wellness, 2016; 5(2), 49-56. DOI: 10.1016/j.fshw.2016.04.001
  • 122. Wang Z, Zhai D, Zhang D, Bai L, Yao R & Yu J. et al. Quercetin Decreases Insulin Resistance in a Polycystic Ovary Syndrome Rat Model by Improving Inflammatory Microenvironment. Reprod Sci. 2106; 24(5), 682-690. DOI: 10.1177/1933719116667218
  • 123. Juźwiak S, Wójcicki J, Mokrzycki K, et al. Effect of quercetin on experimental hyperlipidemia and atherosclerosis in rabbits. Pharmacol Rep. 2005; 57(5):604-609. https://pubmed.ncbi.nlm.nih.gov/16227643/
  • 124. Zhai H, Wu H, Xu H, Weng P, Xia F, Chen Y & Lu, Y. Trace glucose and lipid metabolism in high androgen and high-fat diet induced polycystic ovary syndrome rats. Reprod Biol Endocrinol. 2012; 10(1), 5. DOI: 10.1186/1477-7827-10-5
  • 125. Shah K & Patel S. (2015). Phosphatidylinositide 3-kinase inhibition: A new potential target for the treatment of polycystic ovarian syndrome. Pharmaceut Biol. 2015; 54(6), 975-983. DOI: 10.3109/13880209.2015.1091482
  • 126. Volpi E, Lieberman S, Ferrer D, Gilkison C, Rasmussen B, Nagamani M & Urban R. The Relationships Between Testosterone, Body Composition, and Insulin Resistance: A lesson from a case of extreme hyperandrogenism. Diabetes Care. 2005; 28(2), 429-432. DOI: 10.2337/diacare.28.2.429
  • 127. Amelia D, Santoso B, Purwanto B, Miftahussurur M, Joewono H & Budiono. Effects of Moringa oleifera on Insulin Levels and Folliculogenesis in Polycystic Ovary Syndrome Model with Insulin Resistance. Immunol Endocr Metab Agents Med Chem. 2018; 18(1), 22-30. DOI: 10.2174/1871522218666180426100754
  • 128. Paramanya A, Jha P, Ali A. 2019. Bioactive compounds in Spirulina sp.: Applications and potential health effects. In Next Generation research in Aquaculture, J K Sundaray and M A Rather (Eds.) Narendra Publishing House, Delhi. Pp. 197-218.
  • 129. Sotiroudis T & Sotiroudis G. Health aspects of Spirulina (Arthrospira) microalga food supplement. J Serb Chem Soc. 2013; 78(3), 395-405. DOI: 10.2298/jsc121020152s
  • 130. Wan D, Wu Q & Kuča K. Spirulina. Nutraceuticals. 2016; 569-583. DOI: 10.1016/b978-0-12-802147-7.00042-5
  • 131. Deng R & Chow T. Hypolipidemic, Antioxidant, and Antiinflammatory Activities of Microalgae Spirulina. Cardiovascular Therapeutics. 2010; 28(4), e33-e45. DOI: 10.1111/j.1755-5922.2010.00200.x
  • 132. Kato T, Takemoto K, Katayama H & Kuwabara Y. Eiyo To Shokuryo. 1984; 37(4), 323-332. DOI: 10.4327/jsnfs.37.323
  • 133. Blé-Castillo J, Rodrıguez-Hernández A, Miranda-Zamora R, Juárez-Oropza, M & Dıaz-Zagoya J. Arthrospira maxima prevents the acute fatty liver induced by the administration of simvastatin, ethanol and a hypercholesterolemic diet to mice. Life Sci. 2002; 70(22), 2665-2673. DOI: 10.1016/s0024-3205(02)01512-6
  • 134. Mani U, Desai S & Iyer U. Studies on the Long-Term Effect of Spirulina Supplementation on Serum Lipid Profile and Glycated Proteins in NIDDM Patients. J Nutraceut Funct Med Food. 2000; 2(3), 25-32. DOI: 10.1300/j133v02n03_03
  • 135. Parikh P, Mani U & Iyer U. Role of Spirulina in the Control of Glycemia and Lipidemia in Type 2 Diabetes Mellitus. J Med Food. 2001; 4(4), 193-199. DOI: 10.1089/10966200152744463
  • 136. Lee E, Park J, Choi Y, Huh K & Kim W. A randomized study to establish the effects of spirulina in type 2 diabetes mellitus patients. Nutri Res Practice. 2008; 2(4), 295. DOI: 10.4162/nrp.2008.2.4.295
  • 137. Kaur K, Sachdeva R & Grover K. Effect of supplementation of Spirulina on blood glucose and lipid profile of the non-insulin dependent diabetic male subjects. J Dairying, Foods Home Sci. 2008; 27(3and4), 202-208.
  • 138. Samuels R, Mani U, Iyer U & Nayak U. Hypocholesterolemic Effect ofSpirulinain Patients with Hyperlipidemic Nephrotic Syndrome. J Med Food. 2002; 5(2), 91-96. DOI: 10.1089/109662002760178177
  • 139. Mazokopakis E, Karefilakis C, Tsartsalis A, Milkas A & Ganotakis E. Acute rhabdomyolysis caused by Spirulina (Arthrospira platensis). Phytomedicine. 2008; 15(6-7), 525-527. DOI: 10.1016/j.phymed.2008.03.003
  • 140. Ali A & Paramanya A. Antidiabetic and Antiglycating properties of Spirulina platensis. 2019; MESMAP–5 PROCEEDINGS BOOK, 79.
  • 141. Shaikh N, Dadachanji R & Mukherjee S. Genetic Markers of Polycystic Ovary Syndrome: Emphasis on Insulin Resistance. Intl J Med Genetics. 2014; 1-10. DOI: 10.1155/2014/478972
There are 141 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Review Articles
Authors

Payal Poojari This is me 0000-0003-2617-7552

Amruta Padgaonkar 0000-0002-0443-2279

Additiya Paramanya

Ahmad Ali 0000-0003-4467-5387

Early Pub Date January 3, 2022
Publication Date January 1, 2022
Submission Date June 3, 2021
Acceptance Date July 26, 2021
Published in Issue Year 2022 Volume: 39 Issue: 1

Cite

APA Poojari, P., Padgaonkar, A., Paramanya, A., Ali, A. (2022). Compendium of polycystic ovarian syndrome and its relevance in glycation and diabetes. Journal of Experimental and Clinical Medicine, 39(1), 256-268.
AMA Poojari P, Padgaonkar A, Paramanya A, Ali A. Compendium of polycystic ovarian syndrome and its relevance in glycation and diabetes. J. Exp. Clin. Med. January 2022;39(1):256-268.
Chicago Poojari, Payal, Amruta Padgaonkar, Additiya Paramanya, and Ahmad Ali. “Compendium of Polycystic Ovarian Syndrome and Its Relevance in Glycation and Diabetes”. Journal of Experimental and Clinical Medicine 39, no. 1 (January 2022): 256-68.
EndNote Poojari P, Padgaonkar A, Paramanya A, Ali A (January 1, 2022) Compendium of polycystic ovarian syndrome and its relevance in glycation and diabetes. Journal of Experimental and Clinical Medicine 39 1 256–268.
IEEE P. Poojari, A. Padgaonkar, A. Paramanya, and A. Ali, “Compendium of polycystic ovarian syndrome and its relevance in glycation and diabetes”, J. Exp. Clin. Med., vol. 39, no. 1, pp. 256–268, 2022.
ISNAD Poojari, Payal et al. “Compendium of Polycystic Ovarian Syndrome and Its Relevance in Glycation and Diabetes”. Journal of Experimental and Clinical Medicine 39/1 (January 2022), 256-268.
JAMA Poojari P, Padgaonkar A, Paramanya A, Ali A. Compendium of polycystic ovarian syndrome and its relevance in glycation and diabetes. J. Exp. Clin. Med. 2022;39:256–268.
MLA Poojari, Payal et al. “Compendium of Polycystic Ovarian Syndrome and Its Relevance in Glycation and Diabetes”. Journal of Experimental and Clinical Medicine, vol. 39, no. 1, 2022, pp. 256-68.
Vancouver Poojari P, Padgaonkar A, Paramanya A, Ali A. Compendium of polycystic ovarian syndrome and its relevance in glycation and diabetes. J. Exp. Clin. Med. 2022;39(1):256-68.