Review
BibTex RIS Cite
Year 2022, Volume: 39 Issue: 4, 1277 - 1282, 29.10.2022

Abstract

References

  • 1. Park MH, Subbiah R, Kwon MJ, Kim WJ, Kim SH, Park K, Lee K. The three dimensional cues-integrated-biomaterial potentiates differentiation of human mesenchymal stem cells. Carbohydr Polym. 2018 Dec 15;202:488-496. doi: 10.1016/j.carbpol.2018.09.010
  • 2. Gjorevski N, Lutolf M. Biomaterials approaches in stem cell mechanobiology. Prog Mol Biol Transl Sci. 2014;126:257-78 doi: 10.1016/B978-0-12-394624-9.00011
  • 3. Sharifi E, Khazaei N, Kieran NW, Esfahani SJ, Mohammadnia A, Yaqubi M. Unraveling molecular mechanism underlying biomaterial and stem cells interaction during cell fate commitment using high throughput data analysis. Gene. 2022 Feb 20;812:146111 doi: 10.1016/j.gene.2021.146111.
  • 4. Zhao, X., Li, Q., Guo, Z. Li, Z. Constructing a cell microenvironment with biomaterial scaffolds for stem cell therapy. Stem Cell Res Ther 12, 583 (2021). https://doi.org/10.1186/s13287-021-02650
  • 5. Zhao X, Zhu Y, Laslett AL, Chan HF. Hepatic Differentiation of Stem Cells in 2D and 3D Biomaterial Systems. Bioengineering (Basel). 2020 May 25;7(2):47. doi: 10.3390/bioengineering7020047.
  • 6. Ghasemi-Mobarakeh, L, Kolahreez, D, Ramakrishna, S, Williams, D. Key terminology in biomaterials and biocompatibility. Current Opinion in Biomedical Engineering 10 (2019): 45-50.
  • 7. Bello AB, Park H, Lee SH. Current approaches in biomaterial-based hematopoietic stem cell niches. Acta Biomater. 2018 May;72:1-15. doi: 10.1016/j.actbio.2018.03.028
  • 8. Lv H, Wang H, Zhang Z, Yang W, Liu W, Li Y, Li L. Biomaterial stiffness determines stem cell fate. Life Sci. 2017 Jun 1;178:42-48. doi: 10.1016/j.lfs.2017.04.014.
  • 9. Eridani, S. Stem Cell Applications: An Overview. In: Shiffman, M., Di Giuseppe, A., Bassetto, F. (eds) Stem Cells in Aesthetic Procedures. Springer, Berlin, Heidelberg; 2014, 3-5 https://doi.org/10.1007/978-3-642-45207-9
  • 10. Ylostalo, JH. 3D stem cell culture. Cells 2020: 9.10 -2178.
  • 11. Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther. 2019 Feb 26;10(1):68. doi: 10.1186/s13287-019-1165-5.
  • 12. Watt FM, Huck WT. Role of the extracellular matrix in regulating stem cell fate. Nat Rev Mol Cell Biol. 2013 Aug;14(8):467-73. doi: 10.1038/nrm3620.
  • 13. Hashemzadeh MR, Taghavizadeh Yazdi ME, Amiri MS, Mousavi SH. Stem cell therapy in the heart: Biomaterials as a key route. Tissue Cell. 2021 Aug;71:101504. doi: 10.1016/j.tice.2021.101504
  • 14. Nugud A, Alghfeli L, Elmasry M, El-Serafi I, El-Serafi AT. Biomaterials as a Vital Frontier for Stem Cell-Based Tissue Regeneration. Front Cell Dev Biol. 2022 Mar 24;10:713934. doi: 10.3389/fcell.2022.713934.
  • 15. Menicanin D, Bartold PM, Zannettino AC, Gronthos S. Genomic profiling of mesenchymal stem cells. Stem Cell Rev Rep. 2009 Mar;5(1):36-50. doi: 10.1007/s12015-009-9056-2.
  • 16. Wan, X, Liu, Z, Li L. Manipulation of Stem Cells Fates: The Master and Multifaceted Roles of Biophysical Cues of Biomaterials. Advanced Functıonal Materıals. 2021, 31.23: 2010626.
  • 17. Safina I, Embree MC. Biomaterials for recruiting and activating endogenous stem cells in situ tissue regeneration. Acta Biomater. 2022 Apr 15;143:26-38. doi: 10.1016/j.actbio.2022.03.014.
  • 18. Wilems T, Vardhan S, Wu S, Sakiyama-Elbert S. The influence of microenvironment and extracellular matrix molecules in driving neural stem cell fate within biomaterials. Brain Res Bull. 2019 May;148:25-33. doi: 10.1016/j.brainresbull.2019.03.004.
  • 19. Lensch, MW., Daheron, L. & Schlaeger, TM. Pluripotent stem cells and their niches. Stem Cell Rev 2006;2, 185–201. https://doi.org/10.1007/s12015-006-0047-2
  • 20. Martino S, D'Angelo F, Armentano I, Kenny JM, Orlacchio A. Stem cell-biomaterial interactions for regenerative medicine. Biotechnol Adv. 2012 Jan-Feb;30(1):338-51. doi: 10.1016/j.biotechadv.2011.06.015.
  • 21. Hassan G, Afiffy SM., Kitano, S, Ishii, H, Shang, Y, Matsusaki, M, Seno, M. Cancer stem cell microenvironment models with biomaterial scaffolds in vitro. Processes 9.1 2020: 45.
  • 22. Ravi M, Ramesh A, Pattabhi A. Contributions of 3D Cell Cultures for Cancer Research. J Cell Physiol. 2017 Oct;232(10):2679-2697. doi: 10.1002/jcp.25664.
  • 23 Xu Y, Chen C, Hellwarth PB, Bao X. Biomaterials for stem cell engineering and biomanufacturing. Bioact Mater. 2019 Dec 2;4:366-379. doi: 10.1016/j.bioactmat.2019.11.002.
  • 24. Hiew VV, Simat SFB, Teoh PL. The Advancement of Biomaterials in Regulating Stem Cell Fate. Stem Cell Rev Rep. 2018 Feb;14(1):43-57. doi: 10.1007/s12015-017-9764
  • 25. Hou Y, Liu X, Guo Y, Liu D, Guo P, Liu J. Strategies for Effective Neural Circuit Reconstruction After Spinal Cord Injury: Use of Stem Cells and Biomaterials. World Neurosurg. 2022 May;161:82-89. doi: 10.1016/j.wneu.2022.02.012
  • 26. Han X, Alu A, Liu H, Shi Y, Wei X, Cai L, Wei Y. Biomaterial-assisted biotherapy: A brief review of biomaterials used in drug delivery, vaccine development, gene therapy, and stem cell therapy. Bioact Mater. 2022 Jan 19;17:29-48. doi: 10.1016/j.bioactmat.2022.01.011.
  • 27. Zimmermann JA, Schaffer DV. Engineering biomaterials to control the neural differentiation of stem cells. Brain Res Bull. 2019 Aug;150:50-60. doi: 10.1016/j.brainresbull.2019.05.007.
  • 28. Kim H, Kumbar SG, Nukavarapu SP. Biomaterial-directed cell behavior for tissue engineering. Curr Opin Biomed Eng. 2021 Mar;17:100260. doi: 10.1016/j.cobme.2020.100260.
  • 29. Dawson E, Mapili G, Erickson K, Taqvi S, Roy K. Biomaterials for stem cell differentiation. Volume 60, Issue 2, 14 January 2008, Pages 215-228.
  • 30. Chai C, Leong KW. Biomaterials approach to expand and direct differentiation of stem cells. Mol Ther. 2007 Mar;15(3):467-80. doi: 10.1038/sj.mt.6300084.
  • 31. Neuss S, Apel C, Buttler P, Denecke B, Dhanasingh A, Ding X, Grafahrend D, Groger A, Hemmrich K, Herr A, Jahnen-Dechent W, Mastitskaya S, Perez-Bouza A, Rosewick S, Salber J, Wöltje M, Zenke M. Assessment of stem cell/biomaterial combinations for stem cell-based tissue engineering. Biomaterials. 2008 Jan;29(3):302-13. doi: 10.1016/j.biomaterials.2007.09.022
  • 32. Nissar AA, Martowirogo A, Gilbert PM. Targeting the stem cell niche with regenerative biomaterials. Current Opinion in Solid State and Materials Science, Volume 20, Issue 4, August 2016, Pages 180-192
  • 33. O’brien FJ. Biomaterials & scaffolds for tissue engineering. Materials today 14.3 2011: 88-95.
  • 34. Riha SM, Maarof M, Fauzi MB. Synergistic Effect of Biomaterial and Stem Cell for Skin Tissue Engineering in Cutaneous Wound Healing: A Concise Review. Polymers (Basel). 2021 May 12;13(10):1546. doi: 10.3390/polym13101546.
  • 35. Liu T, Xu J, Pan X, Ding Z, Xie H, Wang X, Xie H. Advances of adipose-derived mesenchymal stem cells-based biomaterial scaffolds for oral and maxillofacial tissue engineering. Bioact Mater. 2021 Jan 30;6(8):2467-2478. doi: 10.1016/j.bioactmat.2021.01.015.
  • 36. Golchin A, Farzaneh S, Porjabbar B, Sadegian F, Estaji M, Ranjbarvan P, Kanafimahbob M, Ranjbari J, Salehi-Nik N, Hosseinzadeh S. Regenerative Medicine Under the Control of 3D Scaffolds: Current State and Progress of Tissue Scaffolds. Curr Stem Cell Res Ther. 2021;16(2):209-229. doi: 10.2174/1574888X15666200720115519. 37. Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003 Nov;24(24):4337-51. doi: 10.1016/s0142-9612(03)00340-5.
  • 38. Dhawan A, Kennedy PM, Rizk EB, Ozbolat IT. Three-dimensional Bioprinting for Bone and Cartilage Restoration in Orthopaedic Surgery. J Am Acad Orthop Surg. 2019 Mar 1;27(5):e215-e226. doi: 10.5435/JAAOS-D-17-00632.
  • 39. Yadav LR, Chandran SV, Lavanya K, Selvamurugan N. Chitosan-based 3D-printed scaffolds for bone tissue engineering. Int J Biol Macromol. 2021 Jul 31;183:1925-1938. doi: 10.1016/j.ijbiomac.2021.05.215.
  • 40. Hoang P, Ma Z. Biomaterial-guided stem cell organoid engineering for modeling development and diseases. Acta Biomater. 2021 Sep 15;132:23-36. doi: 10.1016/j.actbio.2021.01.026.

Stem Cell and Biomaterials

Year 2022, Volume: 39 Issue: 4, 1277 - 1282, 29.10.2022

Abstract

Stem cells are cells that are not yet differentiated, can divide asymmetrically, differentiate into different cell types, and perform functional tissue repair. They are recognized as major cellular candidates for the regeneration of damaged tissues. Biomaterials and biomaterial scaffolds are very important in tissue engineering applications using stem cells. Recently, studies examining stem cell biomaterial interactions in different aspects have attracted attention. In this review, current information about the general properties of stem cells and biomaterials, stem cell-biomaterial interactions, three-dimensional (3D) tissue scaffolds used in stem cell studies and 3D bioprinting are given.

References

  • 1. Park MH, Subbiah R, Kwon MJ, Kim WJ, Kim SH, Park K, Lee K. The three dimensional cues-integrated-biomaterial potentiates differentiation of human mesenchymal stem cells. Carbohydr Polym. 2018 Dec 15;202:488-496. doi: 10.1016/j.carbpol.2018.09.010
  • 2. Gjorevski N, Lutolf M. Biomaterials approaches in stem cell mechanobiology. Prog Mol Biol Transl Sci. 2014;126:257-78 doi: 10.1016/B978-0-12-394624-9.00011
  • 3. Sharifi E, Khazaei N, Kieran NW, Esfahani SJ, Mohammadnia A, Yaqubi M. Unraveling molecular mechanism underlying biomaterial and stem cells interaction during cell fate commitment using high throughput data analysis. Gene. 2022 Feb 20;812:146111 doi: 10.1016/j.gene.2021.146111.
  • 4. Zhao, X., Li, Q., Guo, Z. Li, Z. Constructing a cell microenvironment with biomaterial scaffolds for stem cell therapy. Stem Cell Res Ther 12, 583 (2021). https://doi.org/10.1186/s13287-021-02650
  • 5. Zhao X, Zhu Y, Laslett AL, Chan HF. Hepatic Differentiation of Stem Cells in 2D and 3D Biomaterial Systems. Bioengineering (Basel). 2020 May 25;7(2):47. doi: 10.3390/bioengineering7020047.
  • 6. Ghasemi-Mobarakeh, L, Kolahreez, D, Ramakrishna, S, Williams, D. Key terminology in biomaterials and biocompatibility. Current Opinion in Biomedical Engineering 10 (2019): 45-50.
  • 7. Bello AB, Park H, Lee SH. Current approaches in biomaterial-based hematopoietic stem cell niches. Acta Biomater. 2018 May;72:1-15. doi: 10.1016/j.actbio.2018.03.028
  • 8. Lv H, Wang H, Zhang Z, Yang W, Liu W, Li Y, Li L. Biomaterial stiffness determines stem cell fate. Life Sci. 2017 Jun 1;178:42-48. doi: 10.1016/j.lfs.2017.04.014.
  • 9. Eridani, S. Stem Cell Applications: An Overview. In: Shiffman, M., Di Giuseppe, A., Bassetto, F. (eds) Stem Cells in Aesthetic Procedures. Springer, Berlin, Heidelberg; 2014, 3-5 https://doi.org/10.1007/978-3-642-45207-9
  • 10. Ylostalo, JH. 3D stem cell culture. Cells 2020: 9.10 -2178.
  • 11. Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther. 2019 Feb 26;10(1):68. doi: 10.1186/s13287-019-1165-5.
  • 12. Watt FM, Huck WT. Role of the extracellular matrix in regulating stem cell fate. Nat Rev Mol Cell Biol. 2013 Aug;14(8):467-73. doi: 10.1038/nrm3620.
  • 13. Hashemzadeh MR, Taghavizadeh Yazdi ME, Amiri MS, Mousavi SH. Stem cell therapy in the heart: Biomaterials as a key route. Tissue Cell. 2021 Aug;71:101504. doi: 10.1016/j.tice.2021.101504
  • 14. Nugud A, Alghfeli L, Elmasry M, El-Serafi I, El-Serafi AT. Biomaterials as a Vital Frontier for Stem Cell-Based Tissue Regeneration. Front Cell Dev Biol. 2022 Mar 24;10:713934. doi: 10.3389/fcell.2022.713934.
  • 15. Menicanin D, Bartold PM, Zannettino AC, Gronthos S. Genomic profiling of mesenchymal stem cells. Stem Cell Rev Rep. 2009 Mar;5(1):36-50. doi: 10.1007/s12015-009-9056-2.
  • 16. Wan, X, Liu, Z, Li L. Manipulation of Stem Cells Fates: The Master and Multifaceted Roles of Biophysical Cues of Biomaterials. Advanced Functıonal Materıals. 2021, 31.23: 2010626.
  • 17. Safina I, Embree MC. Biomaterials for recruiting and activating endogenous stem cells in situ tissue regeneration. Acta Biomater. 2022 Apr 15;143:26-38. doi: 10.1016/j.actbio.2022.03.014.
  • 18. Wilems T, Vardhan S, Wu S, Sakiyama-Elbert S. The influence of microenvironment and extracellular matrix molecules in driving neural stem cell fate within biomaterials. Brain Res Bull. 2019 May;148:25-33. doi: 10.1016/j.brainresbull.2019.03.004.
  • 19. Lensch, MW., Daheron, L. & Schlaeger, TM. Pluripotent stem cells and their niches. Stem Cell Rev 2006;2, 185–201. https://doi.org/10.1007/s12015-006-0047-2
  • 20. Martino S, D'Angelo F, Armentano I, Kenny JM, Orlacchio A. Stem cell-biomaterial interactions for regenerative medicine. Biotechnol Adv. 2012 Jan-Feb;30(1):338-51. doi: 10.1016/j.biotechadv.2011.06.015.
  • 21. Hassan G, Afiffy SM., Kitano, S, Ishii, H, Shang, Y, Matsusaki, M, Seno, M. Cancer stem cell microenvironment models with biomaterial scaffolds in vitro. Processes 9.1 2020: 45.
  • 22. Ravi M, Ramesh A, Pattabhi A. Contributions of 3D Cell Cultures for Cancer Research. J Cell Physiol. 2017 Oct;232(10):2679-2697. doi: 10.1002/jcp.25664.
  • 23 Xu Y, Chen C, Hellwarth PB, Bao X. Biomaterials for stem cell engineering and biomanufacturing. Bioact Mater. 2019 Dec 2;4:366-379. doi: 10.1016/j.bioactmat.2019.11.002.
  • 24. Hiew VV, Simat SFB, Teoh PL. The Advancement of Biomaterials in Regulating Stem Cell Fate. Stem Cell Rev Rep. 2018 Feb;14(1):43-57. doi: 10.1007/s12015-017-9764
  • 25. Hou Y, Liu X, Guo Y, Liu D, Guo P, Liu J. Strategies for Effective Neural Circuit Reconstruction After Spinal Cord Injury: Use of Stem Cells and Biomaterials. World Neurosurg. 2022 May;161:82-89. doi: 10.1016/j.wneu.2022.02.012
  • 26. Han X, Alu A, Liu H, Shi Y, Wei X, Cai L, Wei Y. Biomaterial-assisted biotherapy: A brief review of biomaterials used in drug delivery, vaccine development, gene therapy, and stem cell therapy. Bioact Mater. 2022 Jan 19;17:29-48. doi: 10.1016/j.bioactmat.2022.01.011.
  • 27. Zimmermann JA, Schaffer DV. Engineering biomaterials to control the neural differentiation of stem cells. Brain Res Bull. 2019 Aug;150:50-60. doi: 10.1016/j.brainresbull.2019.05.007.
  • 28. Kim H, Kumbar SG, Nukavarapu SP. Biomaterial-directed cell behavior for tissue engineering. Curr Opin Biomed Eng. 2021 Mar;17:100260. doi: 10.1016/j.cobme.2020.100260.
  • 29. Dawson E, Mapili G, Erickson K, Taqvi S, Roy K. Biomaterials for stem cell differentiation. Volume 60, Issue 2, 14 January 2008, Pages 215-228.
  • 30. Chai C, Leong KW. Biomaterials approach to expand and direct differentiation of stem cells. Mol Ther. 2007 Mar;15(3):467-80. doi: 10.1038/sj.mt.6300084.
  • 31. Neuss S, Apel C, Buttler P, Denecke B, Dhanasingh A, Ding X, Grafahrend D, Groger A, Hemmrich K, Herr A, Jahnen-Dechent W, Mastitskaya S, Perez-Bouza A, Rosewick S, Salber J, Wöltje M, Zenke M. Assessment of stem cell/biomaterial combinations for stem cell-based tissue engineering. Biomaterials. 2008 Jan;29(3):302-13. doi: 10.1016/j.biomaterials.2007.09.022
  • 32. Nissar AA, Martowirogo A, Gilbert PM. Targeting the stem cell niche with regenerative biomaterials. Current Opinion in Solid State and Materials Science, Volume 20, Issue 4, August 2016, Pages 180-192
  • 33. O’brien FJ. Biomaterials & scaffolds for tissue engineering. Materials today 14.3 2011: 88-95.
  • 34. Riha SM, Maarof M, Fauzi MB. Synergistic Effect of Biomaterial and Stem Cell for Skin Tissue Engineering in Cutaneous Wound Healing: A Concise Review. Polymers (Basel). 2021 May 12;13(10):1546. doi: 10.3390/polym13101546.
  • 35. Liu T, Xu J, Pan X, Ding Z, Xie H, Wang X, Xie H. Advances of adipose-derived mesenchymal stem cells-based biomaterial scaffolds for oral and maxillofacial tissue engineering. Bioact Mater. 2021 Jan 30;6(8):2467-2478. doi: 10.1016/j.bioactmat.2021.01.015.
  • 36. Golchin A, Farzaneh S, Porjabbar B, Sadegian F, Estaji M, Ranjbarvan P, Kanafimahbob M, Ranjbari J, Salehi-Nik N, Hosseinzadeh S. Regenerative Medicine Under the Control of 3D Scaffolds: Current State and Progress of Tissue Scaffolds. Curr Stem Cell Res Ther. 2021;16(2):209-229. doi: 10.2174/1574888X15666200720115519. 37. Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003 Nov;24(24):4337-51. doi: 10.1016/s0142-9612(03)00340-5.
  • 38. Dhawan A, Kennedy PM, Rizk EB, Ozbolat IT. Three-dimensional Bioprinting for Bone and Cartilage Restoration in Orthopaedic Surgery. J Am Acad Orthop Surg. 2019 Mar 1;27(5):e215-e226. doi: 10.5435/JAAOS-D-17-00632.
  • 39. Yadav LR, Chandran SV, Lavanya K, Selvamurugan N. Chitosan-based 3D-printed scaffolds for bone tissue engineering. Int J Biol Macromol. 2021 Jul 31;183:1925-1938. doi: 10.1016/j.ijbiomac.2021.05.215.
  • 40. Hoang P, Ma Z. Biomaterial-guided stem cell organoid engineering for modeling development and diseases. Acta Biomater. 2021 Sep 15;132:23-36. doi: 10.1016/j.actbio.2021.01.026.
There are 39 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Review Articles
Authors

Rukiye Demir 0000-0001-8761-9938

Publication Date October 29, 2022
Submission Date July 26, 2022
Acceptance Date August 16, 2022
Published in Issue Year 2022 Volume: 39 Issue: 4

Cite

APA Demir, R. (2022). Stem Cell and Biomaterials. Journal of Experimental and Clinical Medicine, 39(4), 1277-1282.
AMA Demir R. Stem Cell and Biomaterials. J. Exp. Clin. Med. October 2022;39(4):1277-1282.
Chicago Demir, Rukiye. “Stem Cell and Biomaterials”. Journal of Experimental and Clinical Medicine 39, no. 4 (October 2022): 1277-82.
EndNote Demir R (October 1, 2022) Stem Cell and Biomaterials. Journal of Experimental and Clinical Medicine 39 4 1277–1282.
IEEE R. Demir, “Stem Cell and Biomaterials”, J. Exp. Clin. Med., vol. 39, no. 4, pp. 1277–1282, 2022.
ISNAD Demir, Rukiye. “Stem Cell and Biomaterials”. Journal of Experimental and Clinical Medicine 39/4 (October 2022), 1277-1282.
JAMA Demir R. Stem Cell and Biomaterials. J. Exp. Clin. Med. 2022;39:1277–1282.
MLA Demir, Rukiye. “Stem Cell and Biomaterials”. Journal of Experimental and Clinical Medicine, vol. 39, no. 4, 2022, pp. 1277-82.
Vancouver Demir R. Stem Cell and Biomaterials. J. Exp. Clin. Med. 2022;39(4):1277-82.