Review
BibTex RIS Cite

Diving into the cellular puzzle: Exploring the connection between mitochondrial DNA depletion and prostate cancer development

Year 2024, Volume: 41 Issue: 3, 663 - 669, 30.09.2024

Abstract

Mitochondria, essential components of eukaryotic cells, play a central role in generating cellular energy, regulating metabolism, and facilitating cellular interactions. A distinguishing characteristic of mitochondria is their unique circular double-stranded DNA, known as mitochondrial DNA (mtDNA), essential for energy synthesis and overall mitochondrial function. MtDNA depletion is a notable decrease in mtDNA levels and is affected by a combination of genetic and environmental elements. Genetic contributors include inherited mutations, nuclear DNA changes that impact mitochondrial activity, and mutations within the D-loop region of mtDNA. Environmental factors encompass exposure to specific medications, oxidative stress, and insufficient nutrient consumption. Prostate cancer, a primary contributor to male cancer fatalities, has been associated with anomalies in mtDNA structure and function. The involvement of mitochondria in prostate cancer is intricate, influencing energy metabolism, the stability of the genome, and the emergence of aggressive, androgen-independent cancer variants. Notably, mtDNA depletion is implicated in the shift from androgen-sensitive to androgen-resistant prostate cancer, emphasizing its crucial role in disease advancement. Additionally, mtDNA depletion correlates with the development of a cancer stem cell-like phenotype, marked by increased tumor aggressiveness and heightened resistance to therapeutic agents. Research indicates that changes in mtDNA quantity are linked to the progression and prognosis of prostate cancer. Elevated levels of POLRMT, a nuclear enzyme essential for mtDNA synthesis, have been associated with prostate cancer proliferation, while diminished mtDNA levels are linked to increased invasiveness and a shift towards a mesenchymal cell state. In summary, grasping the intricate relationship between mtDNA depletion and prostate cancer is essential for formulating targeted treatment approaches and enhancing patient outcomes. This review article emphasizes the critical role of mtDNA in the advancement of prostate cancer and underscores its potential as a therapeutic focal point in addressing this widespread cancer.

References

  • McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr Biol. 2006;16(14):R551-60.
  • Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis. 2017;1863(5):1066-77.
  • Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417(1):1-13.
  • Nguyen TT, Wei S, Nguyen TH, Jo Y, Zhang Y, Park W, et al. Mitochondria-associated programmed cell death as a therapeutic target for age-related disease. Exp Mol Med. 2023;55(8):1595-619.
  • Mishra J, Davani AJ, Natarajan GK, Kwok WM, Stowe DF, Camara AKS. Cyclosporin A Increases Mitochondrial Buffering of Calcium: An Additional Mechanism in Delaying Mitochondrial Permeability Transition Pore Opening. Cells. 2019;8(9).
  • Shen K, Pender CL, Bar-Ziv R, Zhang H, Wickham K, Willey E, et al. Mitochondria as Cellular and Organismal Signaling Hubs. Annu Rev Cell Dev Biol. 2022;38:179-218.
  • Luo S, Valencia CA, Zhang J, Lee NC, Slone J, Gui B, et al. Biparental Inheritance of Mitochondrial DNA in Humans. Proc Natl Acad Sci U S A. 2018;115(51):13039-44.
  • Chinnery PF, Hudson G. Mitochondrial genetics. Br Med Bull. 2013;106(1):135-59.
  • Moraes CT. What regulates mitochondrial DNA copy number in animal cells? Trends Genet. 2001;17(4):199-205. 10. Larsson NG. Somatic mitochondrial DNA mutations in mammalian aging. Annu Rev Biochem. 2010;79:683-706.
  • Rong Z, Tu P, Xu P, Sun Y, Yu F, Tu N, et al. The mitochondrial response to DNA damage. Frontiers in Cell and Developmental Biology. 2021;9:669379.
  • Druzhyna NM, Wilson GL, LeDoux SP. Mitochondrial DNA repair in aging and disease. Mechanisms of ageing and development. 2008;129(7-8):383-90.
  • Nadalutti CA, Ayala-Peña S, Santos JH. Mitochondrial DNA damage as driver of cellular outcomes. Am J Physiol Cell Physiol. 2022;322(2):C136-c50.
  • Wang H, Han Y, Li S, Chen Y, Chen Y, Wang J, et al. Mitochondrial DNA depletion syndrome and its associated cardiac disease. Frontiers in Cardiovascular Medicine. 2022;8:808115.
  • Falkenberg M. Mitochondrial DNA replication in mammalian cells: overview of the pathway. Essays in biochemistry. 2018;62(3):287-96.
  • Gustafson MA, McCormick EM, Perera L, Longley MJ, Bai R, Kong J, et al. Mitochondrial single-stranded DNA binding protein novel de novo SSBP1 mutation in a child with single large-scale mtDNA deletion (SLSMD) clinically manifesting as Pearson, Kearns-Sayre, and Leigh syndromes. PLoS One. 2019;14(9):e0221829.
  • Nicholls TJ, Minczuk M. In D-loop: 40 years of mitochondrial 7S DNA. Experimental gerontology. 2014;56:175-81.
  • Parikh S, Horvath R. Mitochondrial Depletion Syndromes. Diagnosis and Management of Mitochondrial Disorders. 2019:183-204.
  • Lee HC, Yin PH, Lin JC, Wu CC, Chen CY, Wu CW, et al. Mitochondrial genome instability and mtDNA depletion in human cancers. Ann N Y Acad Sci. 2005;1042:109-22.
  • Rahman S, Poulton J. Diagnosis of mitochondrial DNA depletion syndromes. Arch Dis Child. 2009;94(1):3-5.
  • Kurochkin IO, Etzkorn M, Buchwalter D, Leamy L, Sokolova IM. Top-down control analysis of the cadmium effects on molluscan mitochondria and the mechanisms of cadmium-induced mitochondrial dysfunction. Am J Physiol Regul Integr Comp Physiol. 2011;300(1):R21-31.
  • Lee YS, Kennedy WD, Yin YW. Structural insight into processive human mitochondrial DNA synthesis and disease-related polymerase mutations. Cell. 2009;139(2):312-24.
  • Nicholls TJ, Minczuk M. In D-loop: 40 years of mitochondrial 7S DNA. Exp Gerontol. 2014;56:175-81.
  • Bernardino Gomes TM, Vincent AE, Menger KE, Stewart JB, Nicholls TJ. Mechanisms and pathologies of human mitochondrial DNA replication and deletion formation. Biochemical Journal. 2024;481(11):683-715.
  • Gustafson MA, McCormick EM, Perera L, Longley MJ, Bai R, Kong J, et al. Mitochondrial single-stranded DNA binding protein novel de novo SSBP1 mutation in a child with single large-scale mtDNA deletion (SLSMD) clinically manifesting as Pearson, Kearns-Sayre, and Leigh syndromes. PLoS One. 2019;14(9):e0221829.
  • Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. Ca Cancer J Clin. 2023;73(1):17-48.
  • Kirby M, Hirst C, Crawford ED. Characterising the castration-resistant prostate cancer population: a systematic review. Int J Clin Pract. 2011;65(11):1180-92.
  • Obinata D, Takayama K, Takahashi S, Inoue S. Crosstalk of the Androgen Receptor with Transcriptional Collaborators: Potential Therapeutic Targets for Castration-Resistant Prostate Cancer. Cancers (Basel). 2017;9(3).
  • Scher HI, Halabi S, Tannock I, Morris M, Sternberg CN, Carducci MA, et al. Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J Clin Oncol. 2008;26(7):1148-59.
  • Frattaruolo L, Brindisi M, Curcio R, Marra F, Dolce V, Cappello AR. Targeting the Mitochondrial Metabolic Network: A Promising Strategy in Cancer Treatment. Int J Mol Sci. 2020;21(17).
  • Chaudhary AK, O’Malley J, Kumar S, Inigo JR, Kumar R, Yadav N, Chandra D. Mitochondrial dysfunction and prostate cancer racial disparities among American men. Front Biosci (Schol Ed). 2017;9(1):154-64.
  • Chang KH, Ercole CE, Sharifi N. Androgen metabolism in prostate cancer: from molecular mechanisms to clinical consequences. Br J Cancer. 2014;111(7):1249-54.
  • Hodgson MC, Bowden WA, Agoulnik IU. Androgen receptor footprint on the way to prostate cancer progression. World J Urol. 2012;30(3):279-85. Epub 20110917.
  • Maina PK, Shao P, Liu Q, Fazli L, Tyler S, Nasir M, et al. c-MYC drives histone demethylase PHF8 during neuroendocrine differentiation and in castration-resistant prostate cancer. Oncotarget. 2016;7(46):75585-602.
  • Li X, Grigalavicius M, Li Y, Li X, Zhong Y, Huang R, et al. MtDNA depletion influences the transition of CD44 subtypes in human prostate cancer DU145 cells. Tumor Biology. 2017;39(8):1010428317713671.
  • Li X, Yao L, Wang T, Gu X, Wu Y, Jiang T. Identification of the mitochondrial protein POLRMT as a potential therapeutic target of prostate cancer. Cell Death & Disease. 2023;14(10):665.
  • Li X, Zhong Y, Lu J, Axcrona K, Eide L, Syljuåsen RG, et al. MtDNA depleted PC3 cells exhibit Warburg effect and cancer stem cell features. Oncotarget. 2016;7(26):40297.
  • Liu L, Wang F, Tong Y, Li LF, Liu Y, Gao WQ. Pentamidine inhibits prostate cancer progression via selectively inducing mitochondrial DNA depletion and dysfunction. Cell proliferation. 2020;53(1):e12718.
  • Mehra N, Penning M, Maas J, van Daal N, Giles RH, Voest EE. Circulating mitochondrial nucleic acids have prognostic value for survival in patients with advanced prostate cancer. Clinical cancer research. 2007;13(2):421-6.
  • Higuchi M, Kudo T, Suzuki S, Evans T, Sasaki R, Wada Y, et al. Mitochondrial DNA determines androgen dependence in prostate cancer cell lines. Oncogene. 2006;25(10):1437-45.
  • Moro L, Arbini AA, Marra E, Greco M. Mitochondrial DNA depletion reduces PARP-1 levels and promotes progression of the neoplastic phenotype in prostate carcinoma. Analytical Cellular Pathology. 2008;30(4):307-22.
  • Bajpai P, Koc E, Sonpavde G, Singh R, Singh KK. Mitochondrial localization, import, and mitochondrial function of the androgen receptor. Journal of Biological Chemistry. 2019;294(16):6621-34.
  • Kobayashi A, Azuma K, Ikeda K, Inoue S. Mechanisms underlying the regulation of mitochondrial respiratory chain complexes by nuclear steroid receptors. International journal of molecular sciences. 2020;21(18):6683.
  • Sakellakis M, Flores LJ. Androgen receptor signaling–mitochondrial DNA–oxidative phosphorylation: A critical triangle in early prostate cancer. Current urology. 2022;16(4):207-12.
  • Moro L, Arbini AA, Marra E, Greco M. Mitochondrial DNA depletion reduces PARP-1 levels and promotes progression of the neoplastic phenotype in prostate carcinoma. Cell Oncol. 2008;30(4):307-22.
  • Li X, Zhong Y, Lu J, Axcrona K, Eide L, Syljuåsen RG, et al. MtDNA depleted PC3 cells exhibit Warburg effect and cancer stem cell features. Oncotarget. 2016;7(26):40297-313.
  • Li X, Yao L, Wang T, Gu X, Wu Y, Jiang T. Identification of the mitochondrial protein POLRMT as a potential therapeutic target of prostate cancer. Cell Death Dis. 2023;14(10):665.
  • Kalsbeek AMF, Chan EKF, Grogan J, Petersen DC, Jaratlerdsiri W, Gupta R, et al. Altered mitochondrial genome content signals worse pathology and prognosis in prostate cancer. Prostate. 2018;78(1):25-31.
  • Tagai EK, Miller SM, Kutikov A, Diefenbach MA, Gor RA, Al-Saleem T, et al. Prostate cancer patients’ understanding of the Gleason Scoring System: implications for shared decision-making. Journal of Cancer Education. 2019;34:441-5.
  • Cook CC, Kim A, Terao S, Gotoh A, Higuchi M. Consumption of oxygen: a mitochondrial-generated progression signal of advanced cancer. Cell death & disease. 2012;3(1):e258-e.
  • Cook CC, Kim A, Terao S, Gotoh A, Higuchi M. Consumption of oxygen: a mitochondrial-generated progression signal of advanced cancer. Cell Death Dis. 2012;3(1):e258.
  • Mohd Khair SZN, Abd Radzak SM, Mohamed Yusoff AA. The Uprising of Mitochondrial DNA Biomarker in Cancer. Dis Markers. 2021;2021:7675269.
  • Borah S, Mishra R, Dey S, Suchanti S, Bhowmick NA, Giri B, Haldar S. Prognostic value of circulating mitochondrial DNA in prostate cancer and underlying mechanism. Mitochondrion. 2023;71:40-9.
  • Ingelsson B, Söderberg D, Strid T, Söderberg A, Bergh AC, Loitto V, et al. Lymphocytes eject interferogenic mitochondrial DNA webs in response to CpG and non-CpG oligodeoxynucleotides of class C. Proc Natl Acad Sci U S A. 2018;115(3):E478-e87.
  • Pérez-Treviño P, Velásquez M, García N. Mechanisms of mitochondrial DNA escape and its relationship with different metabolic diseases. Biochim Biophys Acta Mol Basis Dis. 2020;1866(6):165761.
  • Trumpff C, Marsland AL, Basualto-Alarcón C, Martin JL, Carroll JE, Sturm G, et al. Acute psychological stress increases serum circulating cell-free mitochondrial DNA. Psychoneuroendocrinology. 2019;106:268-76.
  • Haldar S, Mishra R, Billet S, Thiruvalluvan M, Placencio-Hickok VR, Madhav A, et al. Cancer epithelia-derived mitochondrial DNA is a targetable initiator of a paracrine signaling loop that confers taxane resistance. Proc Natl Acad Sci U S A. 2020;117(15):8515-23.
  • Ellinger J, Albers P, Müller SC, von Ruecker A, Bastian PJ. Circulating mitochondrial DNA in the serum of patients with testicular germ cell cancer as a novel noninvasive diagnostic biomarker. BJU Int. 2009;104(1):48-52.
  • Ellinger J, Müller DC, Müller SC, Hauser S, Heukamp LC, von Ruecker A, et al. Circulating mitochondrial DNA in serum: a universal diagnostic biomarker for patients with urological malignancies. Urol Oncol. 2012;30(4):509-15.
  • Kohler C, Radpour R, Barekati Z, Asadollahi R, Bitzer J, Wight E, et al. Levels of plasma circulating cell free nuclear and mitochondrial DNA as potential biomarkers for breast tumors. Mol Cancer. 2009;8:105. Epub 20091117.
  • Zachariah RR, Schmid S, Buerki N, Radpour R, Holzgreve W, Zhong X. Levels of circulating cell-free nuclear and mitochondrial DNA in benign and malignant ovarian tumors. Obstet Gynecol. 2008;112(4):843-50.
  • Mehra N, Penning M, Maas J, van Daal N, Giles RH, Voest EE. Circulating mitochondrial nucleic acids have prognostic value for survival in patients with advanced prostate cancer. Clin Cancer Res. 2007;13(2 Pt 1):421-6.
Year 2024, Volume: 41 Issue: 3, 663 - 669, 30.09.2024

Abstract

References

  • McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr Biol. 2006;16(14):R551-60.
  • Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis. 2017;1863(5):1066-77.
  • Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417(1):1-13.
  • Nguyen TT, Wei S, Nguyen TH, Jo Y, Zhang Y, Park W, et al. Mitochondria-associated programmed cell death as a therapeutic target for age-related disease. Exp Mol Med. 2023;55(8):1595-619.
  • Mishra J, Davani AJ, Natarajan GK, Kwok WM, Stowe DF, Camara AKS. Cyclosporin A Increases Mitochondrial Buffering of Calcium: An Additional Mechanism in Delaying Mitochondrial Permeability Transition Pore Opening. Cells. 2019;8(9).
  • Shen K, Pender CL, Bar-Ziv R, Zhang H, Wickham K, Willey E, et al. Mitochondria as Cellular and Organismal Signaling Hubs. Annu Rev Cell Dev Biol. 2022;38:179-218.
  • Luo S, Valencia CA, Zhang J, Lee NC, Slone J, Gui B, et al. Biparental Inheritance of Mitochondrial DNA in Humans. Proc Natl Acad Sci U S A. 2018;115(51):13039-44.
  • Chinnery PF, Hudson G. Mitochondrial genetics. Br Med Bull. 2013;106(1):135-59.
  • Moraes CT. What regulates mitochondrial DNA copy number in animal cells? Trends Genet. 2001;17(4):199-205. 10. Larsson NG. Somatic mitochondrial DNA mutations in mammalian aging. Annu Rev Biochem. 2010;79:683-706.
  • Rong Z, Tu P, Xu P, Sun Y, Yu F, Tu N, et al. The mitochondrial response to DNA damage. Frontiers in Cell and Developmental Biology. 2021;9:669379.
  • Druzhyna NM, Wilson GL, LeDoux SP. Mitochondrial DNA repair in aging and disease. Mechanisms of ageing and development. 2008;129(7-8):383-90.
  • Nadalutti CA, Ayala-Peña S, Santos JH. Mitochondrial DNA damage as driver of cellular outcomes. Am J Physiol Cell Physiol. 2022;322(2):C136-c50.
  • Wang H, Han Y, Li S, Chen Y, Chen Y, Wang J, et al. Mitochondrial DNA depletion syndrome and its associated cardiac disease. Frontiers in Cardiovascular Medicine. 2022;8:808115.
  • Falkenberg M. Mitochondrial DNA replication in mammalian cells: overview of the pathway. Essays in biochemistry. 2018;62(3):287-96.
  • Gustafson MA, McCormick EM, Perera L, Longley MJ, Bai R, Kong J, et al. Mitochondrial single-stranded DNA binding protein novel de novo SSBP1 mutation in a child with single large-scale mtDNA deletion (SLSMD) clinically manifesting as Pearson, Kearns-Sayre, and Leigh syndromes. PLoS One. 2019;14(9):e0221829.
  • Nicholls TJ, Minczuk M. In D-loop: 40 years of mitochondrial 7S DNA. Experimental gerontology. 2014;56:175-81.
  • Parikh S, Horvath R. Mitochondrial Depletion Syndromes. Diagnosis and Management of Mitochondrial Disorders. 2019:183-204.
  • Lee HC, Yin PH, Lin JC, Wu CC, Chen CY, Wu CW, et al. Mitochondrial genome instability and mtDNA depletion in human cancers. Ann N Y Acad Sci. 2005;1042:109-22.
  • Rahman S, Poulton J. Diagnosis of mitochondrial DNA depletion syndromes. Arch Dis Child. 2009;94(1):3-5.
  • Kurochkin IO, Etzkorn M, Buchwalter D, Leamy L, Sokolova IM. Top-down control analysis of the cadmium effects on molluscan mitochondria and the mechanisms of cadmium-induced mitochondrial dysfunction. Am J Physiol Regul Integr Comp Physiol. 2011;300(1):R21-31.
  • Lee YS, Kennedy WD, Yin YW. Structural insight into processive human mitochondrial DNA synthesis and disease-related polymerase mutations. Cell. 2009;139(2):312-24.
  • Nicholls TJ, Minczuk M. In D-loop: 40 years of mitochondrial 7S DNA. Exp Gerontol. 2014;56:175-81.
  • Bernardino Gomes TM, Vincent AE, Menger KE, Stewart JB, Nicholls TJ. Mechanisms and pathologies of human mitochondrial DNA replication and deletion formation. Biochemical Journal. 2024;481(11):683-715.
  • Gustafson MA, McCormick EM, Perera L, Longley MJ, Bai R, Kong J, et al. Mitochondrial single-stranded DNA binding protein novel de novo SSBP1 mutation in a child with single large-scale mtDNA deletion (SLSMD) clinically manifesting as Pearson, Kearns-Sayre, and Leigh syndromes. PLoS One. 2019;14(9):e0221829.
  • Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. Ca Cancer J Clin. 2023;73(1):17-48.
  • Kirby M, Hirst C, Crawford ED. Characterising the castration-resistant prostate cancer population: a systematic review. Int J Clin Pract. 2011;65(11):1180-92.
  • Obinata D, Takayama K, Takahashi S, Inoue S. Crosstalk of the Androgen Receptor with Transcriptional Collaborators: Potential Therapeutic Targets for Castration-Resistant Prostate Cancer. Cancers (Basel). 2017;9(3).
  • Scher HI, Halabi S, Tannock I, Morris M, Sternberg CN, Carducci MA, et al. Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J Clin Oncol. 2008;26(7):1148-59.
  • Frattaruolo L, Brindisi M, Curcio R, Marra F, Dolce V, Cappello AR. Targeting the Mitochondrial Metabolic Network: A Promising Strategy in Cancer Treatment. Int J Mol Sci. 2020;21(17).
  • Chaudhary AK, O’Malley J, Kumar S, Inigo JR, Kumar R, Yadav N, Chandra D. Mitochondrial dysfunction and prostate cancer racial disparities among American men. Front Biosci (Schol Ed). 2017;9(1):154-64.
  • Chang KH, Ercole CE, Sharifi N. Androgen metabolism in prostate cancer: from molecular mechanisms to clinical consequences. Br J Cancer. 2014;111(7):1249-54.
  • Hodgson MC, Bowden WA, Agoulnik IU. Androgen receptor footprint on the way to prostate cancer progression. World J Urol. 2012;30(3):279-85. Epub 20110917.
  • Maina PK, Shao P, Liu Q, Fazli L, Tyler S, Nasir M, et al. c-MYC drives histone demethylase PHF8 during neuroendocrine differentiation and in castration-resistant prostate cancer. Oncotarget. 2016;7(46):75585-602.
  • Li X, Grigalavicius M, Li Y, Li X, Zhong Y, Huang R, et al. MtDNA depletion influences the transition of CD44 subtypes in human prostate cancer DU145 cells. Tumor Biology. 2017;39(8):1010428317713671.
  • Li X, Yao L, Wang T, Gu X, Wu Y, Jiang T. Identification of the mitochondrial protein POLRMT as a potential therapeutic target of prostate cancer. Cell Death & Disease. 2023;14(10):665.
  • Li X, Zhong Y, Lu J, Axcrona K, Eide L, Syljuåsen RG, et al. MtDNA depleted PC3 cells exhibit Warburg effect and cancer stem cell features. Oncotarget. 2016;7(26):40297.
  • Liu L, Wang F, Tong Y, Li LF, Liu Y, Gao WQ. Pentamidine inhibits prostate cancer progression via selectively inducing mitochondrial DNA depletion and dysfunction. Cell proliferation. 2020;53(1):e12718.
  • Mehra N, Penning M, Maas J, van Daal N, Giles RH, Voest EE. Circulating mitochondrial nucleic acids have prognostic value for survival in patients with advanced prostate cancer. Clinical cancer research. 2007;13(2):421-6.
  • Higuchi M, Kudo T, Suzuki S, Evans T, Sasaki R, Wada Y, et al. Mitochondrial DNA determines androgen dependence in prostate cancer cell lines. Oncogene. 2006;25(10):1437-45.
  • Moro L, Arbini AA, Marra E, Greco M. Mitochondrial DNA depletion reduces PARP-1 levels and promotes progression of the neoplastic phenotype in prostate carcinoma. Analytical Cellular Pathology. 2008;30(4):307-22.
  • Bajpai P, Koc E, Sonpavde G, Singh R, Singh KK. Mitochondrial localization, import, and mitochondrial function of the androgen receptor. Journal of Biological Chemistry. 2019;294(16):6621-34.
  • Kobayashi A, Azuma K, Ikeda K, Inoue S. Mechanisms underlying the regulation of mitochondrial respiratory chain complexes by nuclear steroid receptors. International journal of molecular sciences. 2020;21(18):6683.
  • Sakellakis M, Flores LJ. Androgen receptor signaling–mitochondrial DNA–oxidative phosphorylation: A critical triangle in early prostate cancer. Current urology. 2022;16(4):207-12.
  • Moro L, Arbini AA, Marra E, Greco M. Mitochondrial DNA depletion reduces PARP-1 levels and promotes progression of the neoplastic phenotype in prostate carcinoma. Cell Oncol. 2008;30(4):307-22.
  • Li X, Zhong Y, Lu J, Axcrona K, Eide L, Syljuåsen RG, et al. MtDNA depleted PC3 cells exhibit Warburg effect and cancer stem cell features. Oncotarget. 2016;7(26):40297-313.
  • Li X, Yao L, Wang T, Gu X, Wu Y, Jiang T. Identification of the mitochondrial protein POLRMT as a potential therapeutic target of prostate cancer. Cell Death Dis. 2023;14(10):665.
  • Kalsbeek AMF, Chan EKF, Grogan J, Petersen DC, Jaratlerdsiri W, Gupta R, et al. Altered mitochondrial genome content signals worse pathology and prognosis in prostate cancer. Prostate. 2018;78(1):25-31.
  • Tagai EK, Miller SM, Kutikov A, Diefenbach MA, Gor RA, Al-Saleem T, et al. Prostate cancer patients’ understanding of the Gleason Scoring System: implications for shared decision-making. Journal of Cancer Education. 2019;34:441-5.
  • Cook CC, Kim A, Terao S, Gotoh A, Higuchi M. Consumption of oxygen: a mitochondrial-generated progression signal of advanced cancer. Cell death & disease. 2012;3(1):e258-e.
  • Cook CC, Kim A, Terao S, Gotoh A, Higuchi M. Consumption of oxygen: a mitochondrial-generated progression signal of advanced cancer. Cell Death Dis. 2012;3(1):e258.
  • Mohd Khair SZN, Abd Radzak SM, Mohamed Yusoff AA. The Uprising of Mitochondrial DNA Biomarker in Cancer. Dis Markers. 2021;2021:7675269.
  • Borah S, Mishra R, Dey S, Suchanti S, Bhowmick NA, Giri B, Haldar S. Prognostic value of circulating mitochondrial DNA in prostate cancer and underlying mechanism. Mitochondrion. 2023;71:40-9.
  • Ingelsson B, Söderberg D, Strid T, Söderberg A, Bergh AC, Loitto V, et al. Lymphocytes eject interferogenic mitochondrial DNA webs in response to CpG and non-CpG oligodeoxynucleotides of class C. Proc Natl Acad Sci U S A. 2018;115(3):E478-e87.
  • Pérez-Treviño P, Velásquez M, García N. Mechanisms of mitochondrial DNA escape and its relationship with different metabolic diseases. Biochim Biophys Acta Mol Basis Dis. 2020;1866(6):165761.
  • Trumpff C, Marsland AL, Basualto-Alarcón C, Martin JL, Carroll JE, Sturm G, et al. Acute psychological stress increases serum circulating cell-free mitochondrial DNA. Psychoneuroendocrinology. 2019;106:268-76.
  • Haldar S, Mishra R, Billet S, Thiruvalluvan M, Placencio-Hickok VR, Madhav A, et al. Cancer epithelia-derived mitochondrial DNA is a targetable initiator of a paracrine signaling loop that confers taxane resistance. Proc Natl Acad Sci U S A. 2020;117(15):8515-23.
  • Ellinger J, Albers P, Müller SC, von Ruecker A, Bastian PJ. Circulating mitochondrial DNA in the serum of patients with testicular germ cell cancer as a novel noninvasive diagnostic biomarker. BJU Int. 2009;104(1):48-52.
  • Ellinger J, Müller DC, Müller SC, Hauser S, Heukamp LC, von Ruecker A, et al. Circulating mitochondrial DNA in serum: a universal diagnostic biomarker for patients with urological malignancies. Urol Oncol. 2012;30(4):509-15.
  • Kohler C, Radpour R, Barekati Z, Asadollahi R, Bitzer J, Wight E, et al. Levels of plasma circulating cell free nuclear and mitochondrial DNA as potential biomarkers for breast tumors. Mol Cancer. 2009;8:105. Epub 20091117.
  • Zachariah RR, Schmid S, Buerki N, Radpour R, Holzgreve W, Zhong X. Levels of circulating cell-free nuclear and mitochondrial DNA in benign and malignant ovarian tumors. Obstet Gynecol. 2008;112(4):843-50.
  • Mehra N, Penning M, Maas J, van Daal N, Giles RH, Voest EE. Circulating mitochondrial nucleic acids have prognostic value for survival in patients with advanced prostate cancer. Clin Cancer Res. 2007;13(2 Pt 1):421-6.
There are 61 citations in total.

Details

Primary Language English
Subjects Cancer Genetics, Cancer Cell Biology
Journal Section Review Articles
Authors

Dilbeste Demir Yeşilyurt 0000-0001-9212-7866

Sercan Ergün 0000-0002-6733-9848

Neslihan Hekim 0000-0002-8470-2848

Sezgin Güneş 0000-0002-3103-6482

Publication Date September 30, 2024
Submission Date May 7, 2024
Acceptance Date July 30, 2024
Published in Issue Year 2024 Volume: 41 Issue: 3

Cite

APA Demir Yeşilyurt, D., Ergün, S., Hekim, N., Güneş, S. (2024). Diving into the cellular puzzle: Exploring the connection between mitochondrial DNA depletion and prostate cancer development. Journal of Experimental and Clinical Medicine, 41(3), 663-669.
AMA Demir Yeşilyurt D, Ergün S, Hekim N, Güneş S. Diving into the cellular puzzle: Exploring the connection between mitochondrial DNA depletion and prostate cancer development. J. Exp. Clin. Med. September 2024;41(3):663-669.
Chicago Demir Yeşilyurt, Dilbeste, Sercan Ergün, Neslihan Hekim, and Sezgin Güneş. “Diving into the Cellular Puzzle: Exploring the Connection Between Mitochondrial DNA Depletion and Prostate Cancer Development”. Journal of Experimental and Clinical Medicine 41, no. 3 (September 2024): 663-69.
EndNote Demir Yeşilyurt D, Ergün S, Hekim N, Güneş S (September 1, 2024) Diving into the cellular puzzle: Exploring the connection between mitochondrial DNA depletion and prostate cancer development. Journal of Experimental and Clinical Medicine 41 3 663–669.
IEEE D. Demir Yeşilyurt, S. Ergün, N. Hekim, and S. Güneş, “Diving into the cellular puzzle: Exploring the connection between mitochondrial DNA depletion and prostate cancer development”, J. Exp. Clin. Med., vol. 41, no. 3, pp. 663–669, 2024.
ISNAD Demir Yeşilyurt, Dilbeste et al. “Diving into the Cellular Puzzle: Exploring the Connection Between Mitochondrial DNA Depletion and Prostate Cancer Development”. Journal of Experimental and Clinical Medicine 41/3 (September 2024), 663-669.
JAMA Demir Yeşilyurt D, Ergün S, Hekim N, Güneş S. Diving into the cellular puzzle: Exploring the connection between mitochondrial DNA depletion and prostate cancer development. J. Exp. Clin. Med. 2024;41:663–669.
MLA Demir Yeşilyurt, Dilbeste et al. “Diving into the Cellular Puzzle: Exploring the Connection Between Mitochondrial DNA Depletion and Prostate Cancer Development”. Journal of Experimental and Clinical Medicine, vol. 41, no. 3, 2024, pp. 663-9.
Vancouver Demir Yeşilyurt D, Ergün S, Hekim N, Güneş S. Diving into the cellular puzzle: Exploring the connection between mitochondrial DNA depletion and prostate cancer development. J. Exp. Clin. Med. 2024;41(3):663-9.