Research Article
BibTex RIS Cite

DÜZENLİ PİLATES YAPAN ÖĞRENCİLERDE EGZERSİZİN SERUM LİPİT PROFİLİ VE ANTİOKSİDAN KAPASİTE ÜZERİNE ETKİSİ

Year 2020, Volume: 11 Issue: 3, 182 - 195, 15.12.2020
https://doi.org/10.17155/omuspd.668181

Abstract

Bu çalışmanın amacı düzenli pilates egzersizleri yapan bireylerde total antioksidan kapasite ve serum lipit profilinin değişimini incelemektir. Bu amaçla, Beden Eğitimi ve Spor Yüksekokulu kız öğrencilerinden düzenli pilates egzersizi yapan (n=12) ve pilates egzersizi yapmayan (n=12) olmak üzere egzersiz ve kontrol grubu oluşturuldu. 10 haftalık pilates egzersiz programına başlamadan önce ve egzersiz programı tamamlandıktan sonra egzersiz ve kontrol grubunu oluşturan tüm öğrencilerden toplamda 2 defa kan örneği alındı. Kan numunelerinde, total lipit, tiyobarbitürik asit reaktif bileşenleri (TBARS), süperoksit dismutaz (SOD) ve katalaz (CAT) aktivitesi spektrofotometrik olarak ölçüldü. 10 haftalık pilates egzersiz programından sonra, egzersiz grubunun total lipit, malondialdehit (MDA), SOD ve CAT aktiviteleri sırasıyla 445±79 mg/dl; 23,82±1,14 µmol/l; 3,25±1,13 U/ml ve 7,96±1,93 U/ml olarak belirlenirken kontrol grubunda bu değerler sırasıyla 595±92 mg/dl; 11,28±1,6 µmol/l, 1,78±0,15 U/ml ve 6,1±1,71 U/ml olarak belirlendi. Verilerin analizinde Spss 23 paket programı kullanıldı. Yapılan çalışmada, egzersiz grubunda uygulanan egzersiz programı öncesi ve sonrası değerleri arasında anlamlı (p<0,05) bir artışın olduğu, kontrol grubunda ise 10 haftalık periyot süresince yapılan analizlerin değerleri arasında anlamlı bir artışın olmadığı (p>0,05) belirlendi. Elde edilen sonuçlara göre egzersiz grubunun kontrol grubundan daha düşük total lipit, daha yüksek plazma MDA konsantrasyonu, SOD ve CAT aktivitesine sahip olduğu görüldü. Egzersiz grubu öğrencilerinin MDA seviyelerinin kontrol grubuna kıyasla daha yüksek bulunması, aynı zamanda egzersiz grubu öğrencilerinin egzersize başlamadan önceki MDA seviyelerinin egzersiz sonrasında önemli ölçüde artması, egzersizin oksijen tüketimi ile birlikte ROS oluşumunu artırmasından dolayıdır. SOD ve CAT aktivitelerinin egzersiz grubunda yüksek bulunması antioksidan savunmanın egzersizler sonrasında arttığı anlamına gelmektedir. Düzenli pilates egzersizi periyotlarının ve şiddetinin arttırıldığı zaman serum lipit profili ve antioksidan kapasite üzerine daha olumlu sonuçlar alınacağı düşünülmektedir.

References

  • 1. Packer L. Oxidants, antioxidant nutrients and the athlete. J Sports Sci., 1997; 15: 353-363.
  • 2. Sato Y. Diabetes and life-styles: role of physical exercise for primary prevention. Br J Nutr., 2000; 84: 187-190.
  • 3. Viña J, Gomez-Cabrera MC, Lloret A, Marquez R, Miñana JB, Pallardó FV, et al. Free radicals in exhaustive physical exercise: mechanism of production, and protection by antioxidants. IUBMB Life, 2000; 50: 271-277.
  • 4. Baltimore MD, Kaikkonen J, Kosonen L, Nysönen K, Porkkala-Sarataho E, Salonen R, et al. Effect of combined coenzyme Q 10 and tocopheryl acetate supplementation on exercise-induced lipid peroxidation and muscular damage a placebo controlled double blind study in marathon runners. Free Rad Res., 1998; 29: 85-92.
  • 5. Sanchez-Quesada JL, Holms-Serradesanferm R, Serrat-Serrat J, Serra-Grima JR, Gonzalez-Sastre J, Ordonez-Llanos J. Increase of LDL susceptibility to oxidation occurring after intense, long duration aerobic exercise. Atherosclerosis, 1995; 118: 297-305.
  • 6. Ji LL. Oxidative stress during exercise: implication of antioxidant nutrients. Free Radical Biology and Medicine, 1995; 18: 1079–1086.
  • 7. Finaud J, Lac G, Filaire E. Oxidative stress: relation ship with exercise and training. Sports Med., 2006; 36: 327-358.
  • 8. Aguilo A, Tauler P, Pilar Guix M, Villa G, Cordova A, Tur JA, et al. Effect of exercise intensity and training on antioxidants and cholesterol profile in cyclists. The Journal of Nutritional Biochemistry, 2003; 14: 319-325.
  • 9. White A, Estrada M, Walker K, Wisnia P, Filgueira G, Valdes F, et al. Role of exercise and ascorbate on plasma antioxidant capacity in thoroughbred race horses. Comparative Biochemistry and Physiology, Part A Molecular and Integrative Physiology, 2001; 128: 99-104.
  • 10. Timothy IM, Kevin EE, Hageman KS, Poole DC. Altered regional blood flow responses to submaximal exercise in older rats. Journal of Applied Physiology, 2003; 96: 81–88.
  • 11. Aydın A, Sayal A, Isımer A. Serbest radikaller ve antioksidan savunma sistemi. Ankara Gülhane Askeri Tıp Akademisi Basımevi; 2001.
  • 12. Abed KE, Rebai H, Bloomer RJ, Trabelsi K, Masmoudi L, Zbidi A, et al. Antioksidant status and oksidative stres at rest and in response to acute exercise in judokas and sedantary men. Journal of Strength & Conditioning Research, 2011; 25: 2400-2409.
  • 13. Tekcan M, Oksidatif stres-antioksidan sistemler. Infertilite- Androloji Bülteni, 2009; 131-136.
  • 14. Clarkson PM, Thompson HS. Antioxidants: what role do they play in physical exercise and health?. Am J Clin Nutr., 2000; 72: 637–646.
  • 15. Smith LL, Miles MP. Exercise induced muscle injury and inflammation. Kirkendall Exercise and Sport Science, 2000; 401-411.
  • 16. Tran ZV, Weltman A. Differential effects of exercise on serum lipid and lipoprotein levels seen with changes in body weight: a meta-analysis. JAMA, 1985; 254: 919-924.
  • 17. La Monte MJ, Durstine JL, Addy CL, Irwin ML, Ainsworth BE. Physical activity, physical fitness, and Framingham 10-year risk score: cross-cultural activity participation study. J Cardiopulm Rehabil, 2001; 21: 63.
  • 18. Roh HT, So WY. The effects of aerobic exercise training on oxidant-antioxidant balance, neurotrophic factor levels, and blood–brain barrier function in obese and non-obese men. Journal of sport and health science, 2016; 1-7.
  • 19. Frings CS, Frendly TW, Dunn RT, Queen CR. Improved determination of total serum lipids the sulfo-phospho-vanilin reaction. Clin Chem., 1972; 18: 673–674.
  • 20. Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol., 1978; 52: 302–310.
  • 21. Devasagayam TP, Boloor KK, Ramasarma T. Methods for estimating lipid peroxidation: an analysis of merits and demerits. Indian J Biochem Biophys., 2003; 40: 300-308.
  • 22. Cakmak I, Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant. Physiol., 1998; 98, 1222-1227.
  • 23. Dhindsa RH, Plumb-Dhindsa R, Thorpe TA. Leaf senescence correlated with increased level of membrane permeability, lipid peroxidation and decreased level of SOD and CAT. J. Exp. Bot., 1981; 32, 93-101.
  • 24. Ho Min K, Mikal ES. Activity of enzymatic antioxidant defense systems in chilled and heat shocked cucumber seedling radicles. Physiologia Plantarum., 2001; 113, 548–556.
  • 25. Aebi H. Catalase in vitro. Methods in Enzymology; 1984.
  • 26. Tadayuki I, Akiko T, Shinya S, Ken-ichi O, Ippei H, Yuko K, Koji T, Yoshimitsu M. A Simple Assay for Measuring Catalase Activity: A Visual Approach. Scientific reports, 2013; 1-4.
  • 27. Durstine JL, Grandjean PW, Davis PG, Ferguson MA, Alderson NL, DuBose KD. Blood lipid and lipoprotein adaptations to exercise: a quantitative analysis (Review). Sports Med., 2001; 1: 1033-1062.
  • 28. Phrompaet S, Paungmali A, Pirunsan U, Sitilertpisan P. Effects of pilates training on lumbo-pelvic stability and flexibility. Asian J Sports Med., 2011; 2(1):16-22.
  • 29. Marandi SM, Nejad VS, Shanazari Z, Zolaktaf V. A comparison of 12 weeks of pilates and aquatic training on the dynamic balance of women with mulitple sclerosis. Int J Prev Med., 2013; 4(1):110-117.
  • 30. Granacher U, Gollhofer A, Hortobágyi T, Kressig RW, Muehlbauer T. The importance of trunk muscle strength for balance, functional performance, and fall prevention in seniors: a systematic review. Sports Med., 2013; 43(7):627-41.
  • 31. Küçükçakır N, Altan L, Korkmaz NH. Effects of Pilates exercises on pain, functional status and quality of life in women with postmenopausal osteoporosis. Journal of bodywork and movement therapies, 2013; 17(2):204-211.
  • 32. Paulina G, Danka C, Katarina K, Michaela K, Miroslav V, Adela P, Richard I, Jan S, Luba H. Effects of short-term Pilates exercise on selected blood parameters. Gen. Physiol. Biophys, 2018; 37: 443–451.
  • 33. Pancar Z, Bozdal Ö, Biçer M, Akcan F. Acute Effect Of Anaerobıc Exercıse On Dynamıc Balance Of Sedentary Young Boys. European Journal of Physical Education and Sport Science, 2017; 3(12): 229-237.
  • 34. Özer Y, Bozdal Ö, Pancar Z. Acute effect of cırcuıt aerobıc and tradıtıonal aerobic training on hamstring flexibılıty ın sedentary women. European Journal of Physical Education and Sport Science, 2017; 3(12): 268-275.
  • 35. Tran ZV, Weltman A. Differentialeffects of exercise on serum lipid and lipoprotein levels seen with changes in body weight: A Meta–Analysis. Jama, 1985; 254: 919–24.
  • 36. Tsekouras YE, Magkos F, Kellas Y, Basioukas KN, Kavouras SA, Sidossis LS. High-intensity interval aerobic training reduces hepatic very low-density lipoproteintriglyceride secretion rate in men. Am J Physiol Endocrinol Metab., 2008; 295: 851-858.
  • 37. Wooten JS, Biggerstaff KD, Anderson C. Response of lipid, lipoproteincholesterol, and electrophoretic characteristics of lipoproteins following a single bout of aerobic exercise in women. Eur J Appl Physiol., 2008; 104: 19-27.
  • 38. Alessio HM. Exercise-induced oxidative stress. Med Sci Sports Exerc., 1993; 25: 218-224.
  • 39. Clarkson PM. Antioxidant and physical performance. Crit Rev Food Nutr., 1995; 35: 131-141.
  • 40. Dernbach AR, Sherman WM, Simonse FC. No evidence of oxidant stress during high-intensity rowing training. J Appl Physiol., 1993; 74: 2140-2145.
  • 41. Jenkins RR, Frledland R, Howald H. Free radical chemistry: Relationship to exercise. Sports Med., 1988; 5: 156-70.
  • 42. Salminen A, Vihco V. Endurance training reduces the susceptibilty of mouse skelatal muscle to lipid peroxidation in vitro. Acta Physiol Scand., 1983; 117: 109-113.
  • 43. Abed KE, Rebai H, Bloomer RJ, Trabelsi K, Masmoudi L, Zbidi A, et al. Antioksidant status and oksidative stres at rest and in response to acute exercise in judokas and sedantary men. Journal of Strength & Conditioning Research., 2011; 25: 2400-2409.
  • 44. Sabbağ Ç, Sürücüoğlu MS. likopen: insan sağlığında vazgeçilmez bir bileşen. Gıda Teknolojileri Elektronik Dergisi, 2011; 6: 27-41.
  • 45. Mena P, Maynar M, Gutierrez JM, Maynar J,Timon J, Campillo JE. Erythrocyte free radical scavenger enzymes in bicycle professional racers, adaptation to training. Int. J. Sports Med, 1991; 12:563-566.
  • 46. Kıyıcı F, Kishalı NF. Alp Disiplini Kayakçılarında Sürat Egzersizleri Sonrası Kan Antioksidan Düzeylerinin İncelenmesi. Atabesbd, 2010; 12 (1) : 1-9.
  • 47. Fang YZ, Yang S, Wu G. Free radicals, antioxidants and nutrition. Nutrition, 2002; 18: 872-879.
  • 48. Coşkun T. Fonksiyonel besinlerin sağlığımız üzerine etkileri. Çocuk sağlığı ve hastalıkları dergisi, 2005; 48: 69-84.
  • 49. Dusica D, Tosic JS, Stefanovic D, Barudzic N, Vuletic M, Zivkovic V, Jakovljevic V. The Effects Of Two Fıtness Programs Wıth Dıfferent Metabolıc Demands On Oxıdatıve Stress In The Blood Of Young Females. Ser J Exp Clin Res, 2015; 16 (2): 101-107.
Year 2020, Volume: 11 Issue: 3, 182 - 195, 15.12.2020
https://doi.org/10.17155/omuspd.668181

Abstract

The aim of this study is to investigate the changes in total antioxidant capacity and serum lipid profile in individuals who performed regular pilates exercises. For this purpose, an exercise and control group consisted of female students (n = 12) of the School of Physical Education and Sports (n = 12) who did regular pilates exercises and females (n = 12) who did not do regular pilates. Blood samples were taken twice from all the students in exercise and control group before and after the 10 week pilates exercise program. Total lipid, thiobarbituric acid reactive components (TBARS), superoxide dismutase (SOD) and catalase (CAT) activity were measured spectrophotometrically in blood samples. After the 10 week exercise program was completed, for exercise group, total lipid, malondialdehyde (MDA) concentration, SOD and CAT activities were determined as 445±79 mg/dl; 23.82±1.14 µmole/l; 3.25±1.13 U/ml and 7.96±1.93 U/ml, respectively. For control group these values were determined as 595±92 mg/dl; 11.28±1.6 µmole/l, 1.78±0.15 U/ml and 6.1±1.71 U/ml. Spss 23 package program was used to analyze the data. In the study, it was determined that there was a significant (p <0.05) increase between the values before and after the exercise program applied in the exercise group, and that there was no significant increase (p> 0.05) between the values of the analyzes performed during the 10-week period in the control group. According to the results, exercise group had lower total lipid, higher plasma MDA concentration, SOD and CAT activity than the control group. MDA levels of the exercise group students were higher than the control group and the MDA levels of exercise group before the exercise increased significantly after the exercise, this increase is due to the increase in ROS formation and oxygen consumption with exercise. High SOD and CAT activity in the exercise group means that antioxidant defense increases after the exercises. It is thought that when regular pilates exercise periods and intensity are increased, more positive results will be obtained on serum lipid profile and antioxidant capacity.

References

  • 1. Packer L. Oxidants, antioxidant nutrients and the athlete. J Sports Sci., 1997; 15: 353-363.
  • 2. Sato Y. Diabetes and life-styles: role of physical exercise for primary prevention. Br J Nutr., 2000; 84: 187-190.
  • 3. Viña J, Gomez-Cabrera MC, Lloret A, Marquez R, Miñana JB, Pallardó FV, et al. Free radicals in exhaustive physical exercise: mechanism of production, and protection by antioxidants. IUBMB Life, 2000; 50: 271-277.
  • 4. Baltimore MD, Kaikkonen J, Kosonen L, Nysönen K, Porkkala-Sarataho E, Salonen R, et al. Effect of combined coenzyme Q 10 and tocopheryl acetate supplementation on exercise-induced lipid peroxidation and muscular damage a placebo controlled double blind study in marathon runners. Free Rad Res., 1998; 29: 85-92.
  • 5. Sanchez-Quesada JL, Holms-Serradesanferm R, Serrat-Serrat J, Serra-Grima JR, Gonzalez-Sastre J, Ordonez-Llanos J. Increase of LDL susceptibility to oxidation occurring after intense, long duration aerobic exercise. Atherosclerosis, 1995; 118: 297-305.
  • 6. Ji LL. Oxidative stress during exercise: implication of antioxidant nutrients. Free Radical Biology and Medicine, 1995; 18: 1079–1086.
  • 7. Finaud J, Lac G, Filaire E. Oxidative stress: relation ship with exercise and training. Sports Med., 2006; 36: 327-358.
  • 8. Aguilo A, Tauler P, Pilar Guix M, Villa G, Cordova A, Tur JA, et al. Effect of exercise intensity and training on antioxidants and cholesterol profile in cyclists. The Journal of Nutritional Biochemistry, 2003; 14: 319-325.
  • 9. White A, Estrada M, Walker K, Wisnia P, Filgueira G, Valdes F, et al. Role of exercise and ascorbate on plasma antioxidant capacity in thoroughbred race horses. Comparative Biochemistry and Physiology, Part A Molecular and Integrative Physiology, 2001; 128: 99-104.
  • 10. Timothy IM, Kevin EE, Hageman KS, Poole DC. Altered regional blood flow responses to submaximal exercise in older rats. Journal of Applied Physiology, 2003; 96: 81–88.
  • 11. Aydın A, Sayal A, Isımer A. Serbest radikaller ve antioksidan savunma sistemi. Ankara Gülhane Askeri Tıp Akademisi Basımevi; 2001.
  • 12. Abed KE, Rebai H, Bloomer RJ, Trabelsi K, Masmoudi L, Zbidi A, et al. Antioksidant status and oksidative stres at rest and in response to acute exercise in judokas and sedantary men. Journal of Strength & Conditioning Research, 2011; 25: 2400-2409.
  • 13. Tekcan M, Oksidatif stres-antioksidan sistemler. Infertilite- Androloji Bülteni, 2009; 131-136.
  • 14. Clarkson PM, Thompson HS. Antioxidants: what role do they play in physical exercise and health?. Am J Clin Nutr., 2000; 72: 637–646.
  • 15. Smith LL, Miles MP. Exercise induced muscle injury and inflammation. Kirkendall Exercise and Sport Science, 2000; 401-411.
  • 16. Tran ZV, Weltman A. Differential effects of exercise on serum lipid and lipoprotein levels seen with changes in body weight: a meta-analysis. JAMA, 1985; 254: 919-924.
  • 17. La Monte MJ, Durstine JL, Addy CL, Irwin ML, Ainsworth BE. Physical activity, physical fitness, and Framingham 10-year risk score: cross-cultural activity participation study. J Cardiopulm Rehabil, 2001; 21: 63.
  • 18. Roh HT, So WY. The effects of aerobic exercise training on oxidant-antioxidant balance, neurotrophic factor levels, and blood–brain barrier function in obese and non-obese men. Journal of sport and health science, 2016; 1-7.
  • 19. Frings CS, Frendly TW, Dunn RT, Queen CR. Improved determination of total serum lipids the sulfo-phospho-vanilin reaction. Clin Chem., 1972; 18: 673–674.
  • 20. Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol., 1978; 52: 302–310.
  • 21. Devasagayam TP, Boloor KK, Ramasarma T. Methods for estimating lipid peroxidation: an analysis of merits and demerits. Indian J Biochem Biophys., 2003; 40: 300-308.
  • 22. Cakmak I, Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant. Physiol., 1998; 98, 1222-1227.
  • 23. Dhindsa RH, Plumb-Dhindsa R, Thorpe TA. Leaf senescence correlated with increased level of membrane permeability, lipid peroxidation and decreased level of SOD and CAT. J. Exp. Bot., 1981; 32, 93-101.
  • 24. Ho Min K, Mikal ES. Activity of enzymatic antioxidant defense systems in chilled and heat shocked cucumber seedling radicles. Physiologia Plantarum., 2001; 113, 548–556.
  • 25. Aebi H. Catalase in vitro. Methods in Enzymology; 1984.
  • 26. Tadayuki I, Akiko T, Shinya S, Ken-ichi O, Ippei H, Yuko K, Koji T, Yoshimitsu M. A Simple Assay for Measuring Catalase Activity: A Visual Approach. Scientific reports, 2013; 1-4.
  • 27. Durstine JL, Grandjean PW, Davis PG, Ferguson MA, Alderson NL, DuBose KD. Blood lipid and lipoprotein adaptations to exercise: a quantitative analysis (Review). Sports Med., 2001; 1: 1033-1062.
  • 28. Phrompaet S, Paungmali A, Pirunsan U, Sitilertpisan P. Effects of pilates training on lumbo-pelvic stability and flexibility. Asian J Sports Med., 2011; 2(1):16-22.
  • 29. Marandi SM, Nejad VS, Shanazari Z, Zolaktaf V. A comparison of 12 weeks of pilates and aquatic training on the dynamic balance of women with mulitple sclerosis. Int J Prev Med., 2013; 4(1):110-117.
  • 30. Granacher U, Gollhofer A, Hortobágyi T, Kressig RW, Muehlbauer T. The importance of trunk muscle strength for balance, functional performance, and fall prevention in seniors: a systematic review. Sports Med., 2013; 43(7):627-41.
  • 31. Küçükçakır N, Altan L, Korkmaz NH. Effects of Pilates exercises on pain, functional status and quality of life in women with postmenopausal osteoporosis. Journal of bodywork and movement therapies, 2013; 17(2):204-211.
  • 32. Paulina G, Danka C, Katarina K, Michaela K, Miroslav V, Adela P, Richard I, Jan S, Luba H. Effects of short-term Pilates exercise on selected blood parameters. Gen. Physiol. Biophys, 2018; 37: 443–451.
  • 33. Pancar Z, Bozdal Ö, Biçer M, Akcan F. Acute Effect Of Anaerobıc Exercıse On Dynamıc Balance Of Sedentary Young Boys. European Journal of Physical Education and Sport Science, 2017; 3(12): 229-237.
  • 34. Özer Y, Bozdal Ö, Pancar Z. Acute effect of cırcuıt aerobıc and tradıtıonal aerobic training on hamstring flexibılıty ın sedentary women. European Journal of Physical Education and Sport Science, 2017; 3(12): 268-275.
  • 35. Tran ZV, Weltman A. Differentialeffects of exercise on serum lipid and lipoprotein levels seen with changes in body weight: A Meta–Analysis. Jama, 1985; 254: 919–24.
  • 36. Tsekouras YE, Magkos F, Kellas Y, Basioukas KN, Kavouras SA, Sidossis LS. High-intensity interval aerobic training reduces hepatic very low-density lipoproteintriglyceride secretion rate in men. Am J Physiol Endocrinol Metab., 2008; 295: 851-858.
  • 37. Wooten JS, Biggerstaff KD, Anderson C. Response of lipid, lipoproteincholesterol, and electrophoretic characteristics of lipoproteins following a single bout of aerobic exercise in women. Eur J Appl Physiol., 2008; 104: 19-27.
  • 38. Alessio HM. Exercise-induced oxidative stress. Med Sci Sports Exerc., 1993; 25: 218-224.
  • 39. Clarkson PM. Antioxidant and physical performance. Crit Rev Food Nutr., 1995; 35: 131-141.
  • 40. Dernbach AR, Sherman WM, Simonse FC. No evidence of oxidant stress during high-intensity rowing training. J Appl Physiol., 1993; 74: 2140-2145.
  • 41. Jenkins RR, Frledland R, Howald H. Free radical chemistry: Relationship to exercise. Sports Med., 1988; 5: 156-70.
  • 42. Salminen A, Vihco V. Endurance training reduces the susceptibilty of mouse skelatal muscle to lipid peroxidation in vitro. Acta Physiol Scand., 1983; 117: 109-113.
  • 43. Abed KE, Rebai H, Bloomer RJ, Trabelsi K, Masmoudi L, Zbidi A, et al. Antioksidant status and oksidative stres at rest and in response to acute exercise in judokas and sedantary men. Journal of Strength & Conditioning Research., 2011; 25: 2400-2409.
  • 44. Sabbağ Ç, Sürücüoğlu MS. likopen: insan sağlığında vazgeçilmez bir bileşen. Gıda Teknolojileri Elektronik Dergisi, 2011; 6: 27-41.
  • 45. Mena P, Maynar M, Gutierrez JM, Maynar J,Timon J, Campillo JE. Erythrocyte free radical scavenger enzymes in bicycle professional racers, adaptation to training. Int. J. Sports Med, 1991; 12:563-566.
  • 46. Kıyıcı F, Kishalı NF. Alp Disiplini Kayakçılarında Sürat Egzersizleri Sonrası Kan Antioksidan Düzeylerinin İncelenmesi. Atabesbd, 2010; 12 (1) : 1-9.
  • 47. Fang YZ, Yang S, Wu G. Free radicals, antioxidants and nutrition. Nutrition, 2002; 18: 872-879.
  • 48. Coşkun T. Fonksiyonel besinlerin sağlığımız üzerine etkileri. Çocuk sağlığı ve hastalıkları dergisi, 2005; 48: 69-84.
  • 49. Dusica D, Tosic JS, Stefanovic D, Barudzic N, Vuletic M, Zivkovic V, Jakovljevic V. The Effects Of Two Fıtness Programs Wıth Dıfferent Metabolıc Demands On Oxıdatıve Stress In The Blood Of Young Females. Ser J Exp Clin Res, 2015; 16 (2): 101-107.
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Hareket ve Antrenman Bilimleri
Authors

Hatice Palüzar 0000-0001-9232-8748

Ali Çirzi 0000-0002-7018-8892

Publication Date December 15, 2020
Published in Issue Year 2020 Volume: 11 Issue: 3

Cite

APA Palüzar, H., & Çirzi, A. (2020). DÜZENLİ PİLATES YAPAN ÖĞRENCİLERDE EGZERSİZİN SERUM LİPİT PROFİLİ VE ANTİOKSİDAN KAPASİTE ÜZERİNE ETKİSİ. Spor Ve Performans Araştırmaları Dergisi, 11(3), 182-195. https://doi.org/10.17155/omuspd.668181