Review
BibTex RIS Cite

GÜVENLİ HAREKET STRATEJİSİ: ANTİ-HAREKET FELSEFESİ (GELENEKSEL DERLEME)

Year 2021, Volume: 12 Issue: 3, 319 - 330, 20.12.2021
https://doi.org/10.17155/omuspd.960010

Abstract

Bu araştırma, lumbopelvik-kalça kompleksi olarak tanımlanan kasların optimizasyonunda, potansiyel güvenli egzersiz stratejisi olabilecek anti-hareket egzersiz yaklaşımının incelenmesi amacıyla geleneksel derleme türünde yazılmıştır. Yayımlanma yılı sınırlaması olmaksızın Google Akademik, PubMed ve Scopus arama tabanlarından “core exercise, safe exercise, spine and exercise” İngilizce anahtar kelimeleri kullanılarak konu ile ilişkili makaleler ele alınmıştır. Araştırma, sistematik derlem türünde yazılmadığı için tüm literatür makaleleri incelenmemiştir. Fitness sektöründe merkezi bölgeye yönelik egzersiz rutinlerine rastlamak mümkündür. Ancak tekrarlı eğilme-bükülme hareketlerinin omurgada herniasyona yol açtığı iddia edilmektedir. Yanlış uygulama kaynaklı yapısal deformitelere bağlı olarak gelişen bel ağrısı görülme oranında artış olduğu bilinmektedir. Epidemiyolojik olarak genellikle posterior zincir hattındaki instabilite veya spesifik olarak zayıf lomber omurga kaynaklı rahatsızlıklara toplumun büyük bir bölümünde rastlamak mümkündür. Diğer taraftan merkezi bölgenin gelişmesinde alternatif güvenli ve etkili egzersiz metodolojilerine ihtiyaç duyulmaktadır. Bu noktada, anti-hareket yaklaşımının omurga sağlığını ön planda tutan güvenli egzersiz stratejilerinden bir tanesi olabileceği düşünülmektedir. Bu beklentinin dayanağı, egzersiz sırasında vertebral sütunun mekanik olarak minimal iç dirence maruz kalmasıdır. Anti-hareket uygulamalarında, omurga güvenli aralık olarak isimlendirilen sınırlarda kalmakta ve dış kuvvetlere karşı moment kuvveti meydana gelmektedir. Omurganın güvenli sınırlar içerisinde tutulması ile vertebral deformitelerin veya mekanik olarak hareket kaynaklı pek çok negatif geri-bildirimin önlenebileceği düşünülmektedir. Derlemede anti-hareket uygulamalarının terminolojisinden, mekanizmalarından ve egzersiz katılımcıları açısından potansiyel progresyon stratejilerinden bahsedilmektedir. Egzersiz katılımcıları kendi sınırlılıkları veya beklentileri doğrultusunda farklı ekipman veya çoklu düzlemlerde uygulanan yeni anti-hareket kalıpları geliştirebilirler ve böylece egzersizden maksimum verim elde edebilirler.

References

  • Behm, D. G., Drinkwater, E. J., Willardson, J. M., & Cowley, P. M. (2010). The use of instability to train the core musculature. Applied physiology, nutrition, and metabolism, 35(1), 91-108.
  • Bergmark, A. (1989). Stability of the lumbar spine: a study in mechanical engineering. Acta Orthopaedica Scandinavica, 60(sup230), 1-54.
  • Callaghan, J. P., Gunning, J. L., & McGill, S. M. (1998). The relationship between lumbar spine load and muscle activity during extensor exercises. Physical therapy, 78(1), 8-18.
  • Cramer, G. D., & Darby, S. A. (2005). Basic and clinical anatomy of the spine, spinal cord, and ANS-E-Book.
  • Crisco 3rd, J. J., & Panjabi, M. M. (1991). The intersegmental and multisegmental muscles of the lumbar spine. A biomechanical model comparing lateral stabilizing potential. Spine, 16(7), 793-799.
  • Çınarlı, F. S. (2021). Anti-hareket egzersiz uygulamalarının kas aktivasyonu ve seçilmiş bazı performans parametreleri üzerine etkisi. Doktora Tezi, İnönü Üniversitesi Sağlık Bilimleri Enstitüsü, Malatya.
  • Fredericson, M., & Moore, T. (2005). Muscular balance, core stability, and injury prevention for middle-and long-distance runners. Physical Medicine and Rehabilitation Clinics, 16(3), 669-689.
  • Frost, B. A., Camarero-Espinosa, S., & Foster, E. J. (2019). Materials for the spine: anatomy, problems, and solutions. Materials, 12(2), 253.
  • Fujiwara, A., An, H. S., Lim, T. H., & Haughton, V. M. (2001). Morphologic changes in the lumbar intervertebral foramen due to flexion-extension, lateral bending, and axial rotation: an in vitro anatomic and biomechanical study. Spine, 26(8), 876-882.
  • Gibbons, S. G., & Comerford, M. J. (2001). Strength versus stability part 1; concept and terms. Orthopaedic Division Review, 43(1), 21-27.
  • Hibbs, A. E., Thompson, K. G., French, D., Wrigley, A., & Spears, I. (2008). Optimizing performance by improving core stability and core strength. Sports medicine, 38(12), 995-1008.
  • Hoffman, J., & Gabel, P. (2013). Expanding Panjabi’s stability model to express movement: A theoretical model. Medical hypotheses, 80(6), 692-697.
  • Huxel Bliven, K. C., & Anderson, B. E. (2013). Core stability training for injury prevention. Sports health, 5(6), 514-522.
  • Juker, D., McGill, S., Kropf, P., & Steffen, T. (1998). Quantitative intramuscular myoelectric activity of lumbar portions of psoas and the abdominal wall during a wide variety of tasks. Medicine and science in sports and exercise, 30(2), 301-310.
  • Keorochana, G., Taghavi, C. E., Lee, K. B., Yoo, J. H., Liao, J. C., Fei, Z., & Wang, J. C. (2011). Effect of sagittal alignment on kinematic changes and degree of disc degeneration in the lumbar spine: an analysis using positional MRI. Spine, 36(11), 893-898.
  • Maeo, S., Takahashi, T., Takai, Y., & Kanehisa, H. (2013). Trunk muscle activities during abdominal bracing: comparison among muscles and exercises. Journal of sports science & medicine, 12(3), 467.
  • Mannen, E. M., Anderson, J. T., Arnold, P. M., & Friis, E. A. (2015). Mechanical analysis of the human cadaveric thoracic spine with intact rib cage. Journal of biomechanics, 48(10), 2060-2066.
  • Marras, W. S., Lavender, S. A., Leurgans, S. E., Rajulu, S. L., Allread, S. W. G., Fathallah, F. A., & Ferguson, S. A. (1993). The role of dynamic three-dimensional trunk motion in occupationally-related. Spine, 18(5), 617-628.
  • McGill, S. (2010). Core training: Evidence translating to better performance and injury prevention. Strength & Conditioning Journal, 32(3), 33-46.
  • McGill, S. (2007). Designing Back Exercise: From Rehabilitation to Enhancing Performance. Guide to training the flexion-intolerant back. March, 12, 2021. https://www.backfitpro.com/pdf/selecting_back_exercises.pdf.
  • McGill, S.M. (2007). Low back disorders: Evidence based prevention and rehabilitation. Champaign, IL, U.S.A: 2nd ed., Human Kinetics Publishers.
  • Milo, J. (2019). Kettlebells. Final ed., Independently Published.
  • Mimura, M., Panjabi, M. M., Oxland, T. R., Crisco, J. J., Yamamoto, I., & Vasavada, A. (1994). Disc degeneration affects the multidirectional flexibility of the lumbar spine. Spine, 19(12), 1371-1380.
  • Narimani, M., & Arjmand, N. (2018). Three-dimensional primary and coupled range of motions and movement coordination of the pelvis, lumbar and thoracic spine in standing posture using inertial tracking device. Journal of biomechanics, 69, 169-174.
  • Neumann, D. A. (2010). Kinesiology of the musculoskeletal system: Foundations for rehabilitatio. 2nd ed. St. Louis, MO: Mosby Elsevier.
  • Ng, J., Parnianpour, M., Richardson, C. A., & Kippers, V. (2001). Functional roles of abdominal and back muscles during isometric axial rotation of the trunk. Journal of Orthopaedic Research, 19(3), 463-471.
  • Nolte, K., Krüger, P. E., Els, P. S., & Nolte, H. (2013). Three dimensional musculoskeletal modelling of the abdominal crunch resistance training exercise. Journal of sports sciences, 31(3), 264-275.
  • Norrie, J. P., & Brown, S. H. (2020). Brace yourself: How abdominal bracing affects intersegmental lumbar spine kinematics in response to sudden loading. Journal of Electromyography and Kinesiology, 54, 102451.
  • Oda, I., Abumi, K., Lü, D., Shono, Y., & Kaneda, K. (1996). Biomechanical role of the posterior elements, costovertebral joints, and rib cage in the stability of the thoracic spine. Spine, 21(12), 1423-1429.
  • Oliva-Lozano, J. M., & Muyor, J. M. (2020). Core muscle activity during physical fitness exercises: A systematic review. International journal of environmental research and public health, 17(12), 4306.
  • Panjabi, M. M. (1992). The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. Journal of spinal disorders, 5, 383-383.
  • Panjabi, M. M. (1992). The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. Journal of spinal disorders, 5, 390-390.
  • Roquelaure, Y., Bodin, J., Ha, C., Le Marec, F., Fouquet, N., Ramond‐Roquin, A., ... & Imbernon, E. (2014). Incidence and risk factors for thoracic spine pain in the working population: the French Pays de la Loire Study. Arthritis care & research, 66(11), 1695-1702.
  • Rousseau, M. A., Bradford, D. S., Hadi, T. M., Pedersen, K. L., & Lotz, J. C. (2006). The instant axis of rotation influences facet forces at L5/S1 during flexion/extension and lateral bending. European Spine Journal, 15(3), 299-307.
  • Snijders, C. J., Vleeming, A., & Stoeckart, R. (1993). Transfer of lumbosacral load to iliac bones and legs: Part 2: Loading of the sacroiliac joints when lifting in a stooped posture. Clinical Biomechanics, 8(6), 295-301.
  • Suni, J., Rinne, M., Natri, A., Statistisian, M. P., Parkkari, J., & Alaranta, H. (2006). Control of the lumbar neutral zone decreases low back pain and improves self-evaluated work ability: a 12-month randomized controlled study. Spine, 31(18), E611-E620.
  • Takeuchi, T., Abumi, K., Shono, Y., Oda, I., & Kaneda, K. (1999). Biomechanical role of the intervertebral disc and costovertebral joint in stability of the thoracic spine: a canine model study. Spine, 24(14), 1414.
  • Tampier, C., Drake, J. D., Callaghan, J. P., & McGill, S. M. (2007). Progressive disc herniation: an investigation of the mechanism using radiologic, histochemical, and microscopic dissection techniques on a porcine model. Spine, 32(25), 2869-2874.
  • Urquhart, D. M., & Hodges, P. W. (2005). Differential activity of regions of transversus abdominis during trunk rotation. European spine journal, 14(4), 393-400.
  • Wohlfahrt, D., Jull, G., & Richardson, C. (1993). The relationship between the dynamic and static function of abdominal muscles. Australian Journal of Physiotherapy, 39(1), 9-13.
  • Yue, J. J., Timm, J. P., Panjabi, M. M., & Jaramillo-De La Torre, J. (2007). Clinical application of the Panjabi neutral zone hypothesis: the Stabilimax NZ posterior lumbar dynamic stabilization system. Neurosurgical focus, 22(1), 1-3.
  • Zazulak, B. T., Hewett, T. E., Reeves, N. P., Goldberg, B., & Cholewicki, J. (2007). Deficits in neuromuscular control of the trunk predict knee injury risk: prospective biomechanical-epidemiologic study. The American journal of sports medicine, 35(7), 1123-1130.

SAFE MOVEMENT STRATEGY: PHILOSOPHY OF ANTI-MOVEMENT (NARRATİVE REVIEW)

Year 2021, Volume: 12 Issue: 3, 319 - 330, 20.12.2021
https://doi.org/10.17155/omuspd.960010

Abstract

This research was written in a traditional review type in order to examine the anti-movement exercise, which may be a potentially safe exercise strategy, in the optimization of the muscles defined as the lumbopelvic-hip complex. Articles related to the subject were discussed by using the English keywords "core exercise, safe exercise, spine and exercise" from Google Scholar, PubMed and Scopus search bases without limitation of publication year. Since the research was not written as a systematic review, not all literature articles were examined In the fitness sector, it is possible to find exercise routines for the central region. However, repetitive bending and flexing movements cause herniation in the spine. There is an increase in the incidence of low back pain due to structural deformities caused by improper exercise. Epidemiologically, instability in the posterior chain line or disorders originating specifically from the weak lumbar spine can be encountered in a large part of the population. On the other hand, there is a need for alternative safe and effective exercise methodologies in the development of the central region. At this point, the anti-movement approach may be one of the safe exercise strategies that prioritize spinal health. The rationality of this expectation is that the vertebral column is mechanically exposed to minimal internal resistance during exercise. In anti-movement exercises, the spine stays within the limits named as safe zone and moment force occurs against external forces. It is thought that keeping the spine within safe limits can prevent vertebral deformities or many negative feedback due to mechanical movement. In the review, terminology of anti-movement practices, mechanisms and potential progression strategies for exercise participants are mentioned. Exercise participants can develop new anti-movement patterns performed in different equipment or in multiple lines with their own limitations or expectations and thus obtain maximum efficiency from the exercise.

References

  • Behm, D. G., Drinkwater, E. J., Willardson, J. M., & Cowley, P. M. (2010). The use of instability to train the core musculature. Applied physiology, nutrition, and metabolism, 35(1), 91-108.
  • Bergmark, A. (1989). Stability of the lumbar spine: a study in mechanical engineering. Acta Orthopaedica Scandinavica, 60(sup230), 1-54.
  • Callaghan, J. P., Gunning, J. L., & McGill, S. M. (1998). The relationship between lumbar spine load and muscle activity during extensor exercises. Physical therapy, 78(1), 8-18.
  • Cramer, G. D., & Darby, S. A. (2005). Basic and clinical anatomy of the spine, spinal cord, and ANS-E-Book.
  • Crisco 3rd, J. J., & Panjabi, M. M. (1991). The intersegmental and multisegmental muscles of the lumbar spine. A biomechanical model comparing lateral stabilizing potential. Spine, 16(7), 793-799.
  • Çınarlı, F. S. (2021). Anti-hareket egzersiz uygulamalarının kas aktivasyonu ve seçilmiş bazı performans parametreleri üzerine etkisi. Doktora Tezi, İnönü Üniversitesi Sağlık Bilimleri Enstitüsü, Malatya.
  • Fredericson, M., & Moore, T. (2005). Muscular balance, core stability, and injury prevention for middle-and long-distance runners. Physical Medicine and Rehabilitation Clinics, 16(3), 669-689.
  • Frost, B. A., Camarero-Espinosa, S., & Foster, E. J. (2019). Materials for the spine: anatomy, problems, and solutions. Materials, 12(2), 253.
  • Fujiwara, A., An, H. S., Lim, T. H., & Haughton, V. M. (2001). Morphologic changes in the lumbar intervertebral foramen due to flexion-extension, lateral bending, and axial rotation: an in vitro anatomic and biomechanical study. Spine, 26(8), 876-882.
  • Gibbons, S. G., & Comerford, M. J. (2001). Strength versus stability part 1; concept and terms. Orthopaedic Division Review, 43(1), 21-27.
  • Hibbs, A. E., Thompson, K. G., French, D., Wrigley, A., & Spears, I. (2008). Optimizing performance by improving core stability and core strength. Sports medicine, 38(12), 995-1008.
  • Hoffman, J., & Gabel, P. (2013). Expanding Panjabi’s stability model to express movement: A theoretical model. Medical hypotheses, 80(6), 692-697.
  • Huxel Bliven, K. C., & Anderson, B. E. (2013). Core stability training for injury prevention. Sports health, 5(6), 514-522.
  • Juker, D., McGill, S., Kropf, P., & Steffen, T. (1998). Quantitative intramuscular myoelectric activity of lumbar portions of psoas and the abdominal wall during a wide variety of tasks. Medicine and science in sports and exercise, 30(2), 301-310.
  • Keorochana, G., Taghavi, C. E., Lee, K. B., Yoo, J. H., Liao, J. C., Fei, Z., & Wang, J. C. (2011). Effect of sagittal alignment on kinematic changes and degree of disc degeneration in the lumbar spine: an analysis using positional MRI. Spine, 36(11), 893-898.
  • Maeo, S., Takahashi, T., Takai, Y., & Kanehisa, H. (2013). Trunk muscle activities during abdominal bracing: comparison among muscles and exercises. Journal of sports science & medicine, 12(3), 467.
  • Mannen, E. M., Anderson, J. T., Arnold, P. M., & Friis, E. A. (2015). Mechanical analysis of the human cadaveric thoracic spine with intact rib cage. Journal of biomechanics, 48(10), 2060-2066.
  • Marras, W. S., Lavender, S. A., Leurgans, S. E., Rajulu, S. L., Allread, S. W. G., Fathallah, F. A., & Ferguson, S. A. (1993). The role of dynamic three-dimensional trunk motion in occupationally-related. Spine, 18(5), 617-628.
  • McGill, S. (2010). Core training: Evidence translating to better performance and injury prevention. Strength & Conditioning Journal, 32(3), 33-46.
  • McGill, S. (2007). Designing Back Exercise: From Rehabilitation to Enhancing Performance. Guide to training the flexion-intolerant back. March, 12, 2021. https://www.backfitpro.com/pdf/selecting_back_exercises.pdf.
  • McGill, S.M. (2007). Low back disorders: Evidence based prevention and rehabilitation. Champaign, IL, U.S.A: 2nd ed., Human Kinetics Publishers.
  • Milo, J. (2019). Kettlebells. Final ed., Independently Published.
  • Mimura, M., Panjabi, M. M., Oxland, T. R., Crisco, J. J., Yamamoto, I., & Vasavada, A. (1994). Disc degeneration affects the multidirectional flexibility of the lumbar spine. Spine, 19(12), 1371-1380.
  • Narimani, M., & Arjmand, N. (2018). Three-dimensional primary and coupled range of motions and movement coordination of the pelvis, lumbar and thoracic spine in standing posture using inertial tracking device. Journal of biomechanics, 69, 169-174.
  • Neumann, D. A. (2010). Kinesiology of the musculoskeletal system: Foundations for rehabilitatio. 2nd ed. St. Louis, MO: Mosby Elsevier.
  • Ng, J., Parnianpour, M., Richardson, C. A., & Kippers, V. (2001). Functional roles of abdominal and back muscles during isometric axial rotation of the trunk. Journal of Orthopaedic Research, 19(3), 463-471.
  • Nolte, K., Krüger, P. E., Els, P. S., & Nolte, H. (2013). Three dimensional musculoskeletal modelling of the abdominal crunch resistance training exercise. Journal of sports sciences, 31(3), 264-275.
  • Norrie, J. P., & Brown, S. H. (2020). Brace yourself: How abdominal bracing affects intersegmental lumbar spine kinematics in response to sudden loading. Journal of Electromyography and Kinesiology, 54, 102451.
  • Oda, I., Abumi, K., Lü, D., Shono, Y., & Kaneda, K. (1996). Biomechanical role of the posterior elements, costovertebral joints, and rib cage in the stability of the thoracic spine. Spine, 21(12), 1423-1429.
  • Oliva-Lozano, J. M., & Muyor, J. M. (2020). Core muscle activity during physical fitness exercises: A systematic review. International journal of environmental research and public health, 17(12), 4306.
  • Panjabi, M. M. (1992). The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. Journal of spinal disorders, 5, 383-383.
  • Panjabi, M. M. (1992). The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. Journal of spinal disorders, 5, 390-390.
  • Roquelaure, Y., Bodin, J., Ha, C., Le Marec, F., Fouquet, N., Ramond‐Roquin, A., ... & Imbernon, E. (2014). Incidence and risk factors for thoracic spine pain in the working population: the French Pays de la Loire Study. Arthritis care & research, 66(11), 1695-1702.
  • Rousseau, M. A., Bradford, D. S., Hadi, T. M., Pedersen, K. L., & Lotz, J. C. (2006). The instant axis of rotation influences facet forces at L5/S1 during flexion/extension and lateral bending. European Spine Journal, 15(3), 299-307.
  • Snijders, C. J., Vleeming, A., & Stoeckart, R. (1993). Transfer of lumbosacral load to iliac bones and legs: Part 2: Loading of the sacroiliac joints when lifting in a stooped posture. Clinical Biomechanics, 8(6), 295-301.
  • Suni, J., Rinne, M., Natri, A., Statistisian, M. P., Parkkari, J., & Alaranta, H. (2006). Control of the lumbar neutral zone decreases low back pain and improves self-evaluated work ability: a 12-month randomized controlled study. Spine, 31(18), E611-E620.
  • Takeuchi, T., Abumi, K., Shono, Y., Oda, I., & Kaneda, K. (1999). Biomechanical role of the intervertebral disc and costovertebral joint in stability of the thoracic spine: a canine model study. Spine, 24(14), 1414.
  • Tampier, C., Drake, J. D., Callaghan, J. P., & McGill, S. M. (2007). Progressive disc herniation: an investigation of the mechanism using radiologic, histochemical, and microscopic dissection techniques on a porcine model. Spine, 32(25), 2869-2874.
  • Urquhart, D. M., & Hodges, P. W. (2005). Differential activity of regions of transversus abdominis during trunk rotation. European spine journal, 14(4), 393-400.
  • Wohlfahrt, D., Jull, G., & Richardson, C. (1993). The relationship between the dynamic and static function of abdominal muscles. Australian Journal of Physiotherapy, 39(1), 9-13.
  • Yue, J. J., Timm, J. P., Panjabi, M. M., & Jaramillo-De La Torre, J. (2007). Clinical application of the Panjabi neutral zone hypothesis: the Stabilimax NZ posterior lumbar dynamic stabilization system. Neurosurgical focus, 22(1), 1-3.
  • Zazulak, B. T., Hewett, T. E., Reeves, N. P., Goldberg, B., & Cholewicki, J. (2007). Deficits in neuromuscular control of the trunk predict knee injury risk: prospective biomechanical-epidemiologic study. The American journal of sports medicine, 35(7), 1123-1130.
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Sports Medicine
Journal Section Review
Authors

Fahri Safa Çınarlı 0000-0002-7552-367X

Muhammed Kafkas 0000-0002-3962-6428

Publication Date December 20, 2021
Published in Issue Year 2021 Volume: 12 Issue: 3

Cite

APA Çınarlı, F. S., & Kafkas, M. (2021). GÜVENLİ HAREKET STRATEJİSİ: ANTİ-HAREKET FELSEFESİ (GELENEKSEL DERLEME). Spor Ve Performans Araştırmaları Dergisi, 12(3), 319-330. https://doi.org/10.17155/omuspd.960010