Research Article
BibTex RIS Cite

Investigation of the Relationship Between Anaerobic Performance and Agility in Elite Ski Mountaineers

Year 2025, Volume: 16 Issue: 2, 253 - 268, 20.08.2025
https://doi.org/10.17155/omuspd.1678883

Abstract

This study examined the relationship between anaerobic performance and agility in elite ski mountaineers. Cross-sectional survey model was used in the study. 14 male ski-mountaineering athletes who competed in the final stage of Ski-mountaineering Turkey Cup" individual race category participated voluntarily. The anaerobic performance of the athletes was evaluated using parameters such as peak power, average power, and fatigue index were assessed via the Wingate test, while agility was measured by Hexagon test. After the data were subjected to descriptive statistics, normality, linearity and homoscedasticity preliminary analyses were performed and the data were analyzed by Pearson correlation and simple regression test. As a result of the study, it was found that there were strong negative relationships between peak power and average power values normalized by body weight and agility times. In contrast, statistically insignificant relationships were found between minimum power and time to peak power and agility. In addition, relative peak power explained 33.9% of the agility variance and relative average power explained 31.1%. This study emphasized that maximal anaerobic power and power output normalized to body weight play a critical role for the success of technical movements in elite alpine skiers. However, the fact that approximately 65-70% of agility is affected by neuromuscular coordination, balance and technical skills indicates that training programs should be multifaceted. Accordingly, explosive strength training, lactic tolerance training and discipline-specific simulations are recommended. The results of the study provide an important contribution to the literature by clarifying the role of anaerobic capacity in ski-mountaineering performance optimization.

Ethical Statement

Ethics committee approval was obtained for the research from the Trabzon University Non-Interventional Clinical Research Research and Publication Ethics Committee with the decision number E-81614018-050.04-2500018986 dated 16.02.2025.

References

  • Andersson, E., Björklund, G., & McGawley, K. (2020). Physiological determinants of performance in elite ski mountaineering: A narrative review. Journal of Sports Science and Medicine, 19(3), 439-447.
  • Beekhuizen, K. S., Field-Fote, E. C., & Angulo, D. L. (2009). Test-retest reliability and validity of the hexagon agility test. Journal of Strength and Conditioning Research, 23(7), 2167-2171. https://doi.org/10.1519/JSC.0b013e3181b3ddb8
  • Behm, D. G., Young, J. D., & Alizadeh, S. (2023). Agility performance in ice hockey players: A systematic review. Sports Biomechanics, 22(1), 1-18. https://doi.org/10.1080/14763141.2021.1984589
  • Bishop, D., Edge, J., & Goodman, C. (2004). Muscle buffer capacity and aerobic fitness are associated with repeated-sprint ability in women. European Journal of Applied Physiology, 92(4-5), 540-547. https://doi.org/10.1007/s00421-004-1150-1
  • Bortolan, L., Savoldelli, A., & Pellegrini, B. (2021). Physiological demands and performance determinants in ski mountaineering. Frontiers in Physiology, 12, 737249. https://doi.org/10.3389/fphys.2021.737249
  • Chaouachi, A., Manzi, V., & Castagna, C. (2020). Agility in team sports: Testing, training and factors affecting performance. Sports Medicine, 50(5), 925-946. https://doi.org/10.1007/s40279-020-01294-9
  • Eroglu, H. (2014). Reliability and validity of the hexagon agility test for adolescent athletes. Journal of Human Kinetics, 42, 143-150. https://doi.org/10.2478/hukin-2014-0072
  • Faiss, R., Léger, B., & Vesin, J. M. (2013). Significant molecular and systemic adaptations after repeated sprint training in hypoxia. Plos One, 8(2), e56522. https://doi.org/10.1371/journal.pone.0056522
  • Fernández-Cortés, J., Delgado-García, G., & Vanrenterghem, J. (2023). Validity and reliability of sport-specific agility tests: A systematic review. International Journal of Sports Physiology and Performance, 18(1), 1-12. https://doi.org/10.1123/ijspp.2022-0123
  • Fraenkel, J. R., & Wallen, N. E. (2006). How to design and evaluate research in education (6th ed.). McGraw-Hill.
  • Fornasiero, A., Savoldelli, A., & Pellegrini, B. (2021). Neuromuscular determinants of performance in ski mountaineering. European Journal of Applied Physiology, 121(5), 1235-1245. https://doi.org/10.1007/s00421-021-04605-6
  • Fornasiero, A., Bortolan, L., & Schena, F. (2023). Equipment and technique adaptations in modern ski mountaineering. Journal of Sports Sciences, 41(4), 389-398. https://doi.org/10.1080/02640414.2022.2152835
  • Gaston, A. F., Doucende, G., & Flore, P. (2019). Physiological responses during ski-mountaineering races: A systematic review. International Journal of Sports Medicine, 40(12), 747-755. https://doi.org/10.1055/a-0973-8600
  • Girardi, M., Nicolò, A., & Bortolan, L. (2021). Energy system contribution during ski-mountaineering races. European Journal of Applied Physiology, 121(3), 801-812. https://doi.org/10.1007/s00421-020-04566-4
  • Glaister, M. (2005). Multiple sprint work: Physiological responses, mechanisms of fatigue and the influence of aerobic fitness. Sports Medicine, 35(9), 757-777. https://doi.org/10.2165/00007256-200535090-00003
  • Gross, M., Lüthy, F., & Hoppeler, H. (2020). Anaerobic power in elite alpine skiers: A comparative study. Scandinavian Journal of Medicine & Science in Sports, 30(8), 1422-1431. https://doi.org/10.1111/sms.13685
  • Harbili, E., Alp, M., & Harbili, S. (2008). Validity and reliability of bioelectrical impedance analysis for body composition assessment in elite wrestlers. Journal of Sports Science and Medicine, 7(4), 642–649.
  • Haff, G. G., & Triplett, N. T. (2015). Essentials of strength training and conditioning (4th ed.). Human Kinetics. Hoffman, J. (2006). Norms for fitness, performance, and health. Human Kinetics.
  • Kang, H. (2021). Sample size determination and power analysis using the G*Power software. Journal of Educational Evaluation for Health Professions, 18, 17. https://doi.org/10.3352/jeehp.2021.18.17
  • Lockie, R. G., Schultz, A. B., & Callaghan, S. J. (2021). Relationship between agility, acceleration, and maximal sprint speed in team sport athletes. Journal of Strength and Conditioning Research, 35(2), 328-335. https://doi.org/10.1519/JSC.0000000000003874
  • Lockie, R. G., et al. (2022). Hexagon agility test: A valid tool for assessing multidirectional speed. Journal of Sports Sciences, 40(5), 512-520. https://doi.org/10.1080/02640414.2021.2005236
  • Losnegard, T., Hallén, J., & Spencer, M. (2019). Physiological predictors of performance in elite ski cross athletes. International Journal of Sports Physiology and Performance, 14(10), 1374-1381. https://doi.org/10.1123/ijspp.2018-0799
  • Müller, E., Schwameder, H., & Raschner, C. (2022). Biomechanical factors influencing performance in ski mountaineering. Sports Biomechanics, 21(2), 189-202. https://doi.org/10.1080/14763141.2020.1754436
  • Pavlova, A. V., Mikhaylova, I. V., & Smirnova, E. A. (2023). Proprioception and agility: A systematic review. Journal of Motor Behavior, 55(1), 1-15. https://doi.org/10.1080/00222895.2022.2108567
  • Pellegrini, B., Fornasiero, A., & Schena, F. (2023). Fatigue dynamics in ski mountaineering: A field study. European Journal of Applied Physiology, 123(4), 867-877. https://doi.org/10.1007/s00421-022-05119-7
  • Praz, C., Grivel, D., & Kayser, B. (2014). Energy expenditure during ski mountaineering: Effects of speed and slope. European Journal of Applied Physiology, 114(6), 1249-1256. https://doi.org/10.1007/s00421-014-2852-7
  • Praz, C., Fasel, B., & Aminian, K. (2022). Technical determinants of performance in ski-mountaineering uphill races. Journal of Sports Sciences, 40(5), 512-520. https://doi.org/10.1080/02640414.2021.2005236
  • Reid, R. C., Cronin, J. B., & Sanders, R. (2019). Agility testing in freestyle skiers: A sport-specific approach. Journal of Sports Science and Medicine, 18(2), 253-260.
  • Román, P. Á. L., López-Sagar, J., & García-Pinillos, F. (2022). Effects of agility training on injury prevention in athletes: A meta-analysis. Journal of Strength and Conditioning Research, 36(3), 871-879. https://doi.org/10.1519/JSC.0000000000004231
  • Rogers, S. A., Hassmén, P., & Hunter, A. (2016). Agility in ice hockey: A review. Sports Biomechanics, 15(1), 1-16. https://doi.org/10.1080/14763141.2015.1119721
  • Sandbakk, Ø., Hegge, A. M., & Ettema, G. (2016). The physiology of world-class sprint skiers. Scandinavian Journal of Medicine & Science in Sports, 26(9), 1052-1060. https://doi.org/10.1111/sms.12537
  • Schenk, K., Faulhaber, M., & Gatterer, H. (2011). Physiological responses and energy expenditure during ski mountaineering. International Journal of Sports Medicine, 32(8), 611-617. https://doi.org/10.1055/s-0031-1273726
  • Sheppard, J. M., & Young, W. B. (2006). Agility literature review: Classifications, training and testing. Journal of Sports Sciences, 24(9), 919-932. https://doi.org/10.1080/02640410500457109
  • Sporis, G., Jukic, I., & Milanovic, L. (2008). The reliability and validity of a new agility test in soccer players. Journal of Strength and Conditioning Research, 22(3), 783-787. https://doi.org/10.1519/JSC.0b013e3181660f8a
  • Sporis, G., Jukic, I., Milanovic, L., & Vucetic, V. (2010). Reliability and factorial validity of agility tests for soccer players. Journal of Strength and Conditioning Research, 24(3), 679–686. https://doi.org/10.1519/JSC.0b013e3181c4d324
  • Stöggl, T., Björklund, G., & Holmberg, H. C. (2020). Training for endurance and strength: Lessons from skiing. Sports Medicine, 50(10), 1703-1725. https://doi.org/10.1007/s40279-020-01325-5
  • Supej, M., Kugovnik, O., & Nemec, B. (2013). Kinematic determination of the transition between carved and skidded turns in alpine skiing. Sports Biomechanics, 12(3), 241-253. https://doi.org/10.1080/14763141.2013.783627
  • Tomazin, K., Morin, J. B., & Stöggl, T. (2021). Force-velocity-power profiling in sprint cycling: Methodological and practical considerations. European Journal of Applied Physiology, 121(9), 2387-2399. https://doi.org/10.1007/s00421-021-04723-3
  • Tomlin, D. L., & Wenger, H. A. (2001). The relationship between aerobic fitness and recovery from high intensity intermittent exercise. Sports Medicine, 31(1), 1-11. https://doi.org/10.2165/00007256-200131010-00001

Elit Dağ Kayağı Sporcularında Anaerobik Performans ile Çeviklik Arasındaki İlişkinin İncelenmesi

Year 2025, Volume: 16 Issue: 2, 253 - 268, 20.08.2025
https://doi.org/10.17155/omuspd.1678883

Abstract

Bu araştırma, elit dağ kayakçılarında anaerobik performans ile çeviklik arasındaki ilişkiyi incelemeyi amaçlamıştır. Kesitsel tarama modeli kullanılan araştırmaya, Dağ Kayağı Türkiye Kupası” bireysel yarış kategorisinde final etabında yarışan 14 erkek dağ kayağı sporcusu gönüllü olarak katılmıştır. Sporcuların anaerobik performansı Wingate testi ile zirve güç, ortalama güç ve güç kaybı gibi parametreler üzerinden değerlendirilirken; çeviklik, Altıgen testi ile ölçülmüştür. Veriler tanımlayıcı istatistiklere tabi tutulduktan sonra normallik, doğrusallık ve homoscedascticity ön analizleri yapılarak veriler Pearson korelasyon ve basit regresyon testi ile analiz edilmiştir. Araştırma sonucunda vücut ağırlığına göre normalize edilen zirve güç ve ortalama güç değerleri ile çeviklik süreleri arasında güçlü negatif ilişkiler olduğu tespit edildi. Buna karşılık, minimum güç ve zirve güce ulaşma süresi ile çeviklik arasında istatistiksel olarak anlamsız ilişki bulunmuştur. Ayrıca rölatif zirve gücün çeviklik varyansının %33.9'unu, rölatif ortalama gücün ise %31.1'ini açıkladığını belirlemiştir.  Bu çalışma elit dağ kayakçılarında teknik hareketlerin (hızlı yön değiştirme, yan basamak atma, v açma, kontrollü iniş ve geçiş teknikleri) başarısı için maksimal anaerobik güç ve vücut ağırlığına normalize edilmiş güç çıktılarının kritik rol oynadığı vurgulanmıştır. Ancak, çevikliğin yaklaşık %65-70'inin nöromüsküler koordinasyon, denge ve teknik becerilerden etkilenmesi, antrenman programlarının çok yönlü olması gerektiğine işaret etmektedir. Bu doğrultuda, patlayıcı kuvvet antrenmanları, laktik tolerans çalışmaları ve disipline özgü simülasyonlar önerilmektedir. Çalışma sonuçları, dağ kayağı performans optimizasyonunda anaerobik kapasitenin rolünü netleştirerek literatüre önemli bir katkı sağlamaktadır.

Ethical Statement

Araştırma için Trabzon Üniversitesi Non-Interventional Clinical Research Research and Publication Ethics Committee (Trabzon Üniversitesi Non-Interventional Klinik Araştırma Araştırma ve Yayın Etik Kurulu) tarafından 16.02.2025 tarihli ve E-81614018-050.04-2500018986 sayılı karar ile etik kurul onayı alınmıştır.

References

  • Andersson, E., Björklund, G., & McGawley, K. (2020). Physiological determinants of performance in elite ski mountaineering: A narrative review. Journal of Sports Science and Medicine, 19(3), 439-447.
  • Beekhuizen, K. S., Field-Fote, E. C., & Angulo, D. L. (2009). Test-retest reliability and validity of the hexagon agility test. Journal of Strength and Conditioning Research, 23(7), 2167-2171. https://doi.org/10.1519/JSC.0b013e3181b3ddb8
  • Behm, D. G., Young, J. D., & Alizadeh, S. (2023). Agility performance in ice hockey players: A systematic review. Sports Biomechanics, 22(1), 1-18. https://doi.org/10.1080/14763141.2021.1984589
  • Bishop, D., Edge, J., & Goodman, C. (2004). Muscle buffer capacity and aerobic fitness are associated with repeated-sprint ability in women. European Journal of Applied Physiology, 92(4-5), 540-547. https://doi.org/10.1007/s00421-004-1150-1
  • Bortolan, L., Savoldelli, A., & Pellegrini, B. (2021). Physiological demands and performance determinants in ski mountaineering. Frontiers in Physiology, 12, 737249. https://doi.org/10.3389/fphys.2021.737249
  • Chaouachi, A., Manzi, V., & Castagna, C. (2020). Agility in team sports: Testing, training and factors affecting performance. Sports Medicine, 50(5), 925-946. https://doi.org/10.1007/s40279-020-01294-9
  • Eroglu, H. (2014). Reliability and validity of the hexagon agility test for adolescent athletes. Journal of Human Kinetics, 42, 143-150. https://doi.org/10.2478/hukin-2014-0072
  • Faiss, R., Léger, B., & Vesin, J. M. (2013). Significant molecular and systemic adaptations after repeated sprint training in hypoxia. Plos One, 8(2), e56522. https://doi.org/10.1371/journal.pone.0056522
  • Fernández-Cortés, J., Delgado-García, G., & Vanrenterghem, J. (2023). Validity and reliability of sport-specific agility tests: A systematic review. International Journal of Sports Physiology and Performance, 18(1), 1-12. https://doi.org/10.1123/ijspp.2022-0123
  • Fraenkel, J. R., & Wallen, N. E. (2006). How to design and evaluate research in education (6th ed.). McGraw-Hill.
  • Fornasiero, A., Savoldelli, A., & Pellegrini, B. (2021). Neuromuscular determinants of performance in ski mountaineering. European Journal of Applied Physiology, 121(5), 1235-1245. https://doi.org/10.1007/s00421-021-04605-6
  • Fornasiero, A., Bortolan, L., & Schena, F. (2023). Equipment and technique adaptations in modern ski mountaineering. Journal of Sports Sciences, 41(4), 389-398. https://doi.org/10.1080/02640414.2022.2152835
  • Gaston, A. F., Doucende, G., & Flore, P. (2019). Physiological responses during ski-mountaineering races: A systematic review. International Journal of Sports Medicine, 40(12), 747-755. https://doi.org/10.1055/a-0973-8600
  • Girardi, M., Nicolò, A., & Bortolan, L. (2021). Energy system contribution during ski-mountaineering races. European Journal of Applied Physiology, 121(3), 801-812. https://doi.org/10.1007/s00421-020-04566-4
  • Glaister, M. (2005). Multiple sprint work: Physiological responses, mechanisms of fatigue and the influence of aerobic fitness. Sports Medicine, 35(9), 757-777. https://doi.org/10.2165/00007256-200535090-00003
  • Gross, M., Lüthy, F., & Hoppeler, H. (2020). Anaerobic power in elite alpine skiers: A comparative study. Scandinavian Journal of Medicine & Science in Sports, 30(8), 1422-1431. https://doi.org/10.1111/sms.13685
  • Harbili, E., Alp, M., & Harbili, S. (2008). Validity and reliability of bioelectrical impedance analysis for body composition assessment in elite wrestlers. Journal of Sports Science and Medicine, 7(4), 642–649.
  • Haff, G. G., & Triplett, N. T. (2015). Essentials of strength training and conditioning (4th ed.). Human Kinetics. Hoffman, J. (2006). Norms for fitness, performance, and health. Human Kinetics.
  • Kang, H. (2021). Sample size determination and power analysis using the G*Power software. Journal of Educational Evaluation for Health Professions, 18, 17. https://doi.org/10.3352/jeehp.2021.18.17
  • Lockie, R. G., Schultz, A. B., & Callaghan, S. J. (2021). Relationship between agility, acceleration, and maximal sprint speed in team sport athletes. Journal of Strength and Conditioning Research, 35(2), 328-335. https://doi.org/10.1519/JSC.0000000000003874
  • Lockie, R. G., et al. (2022). Hexagon agility test: A valid tool for assessing multidirectional speed. Journal of Sports Sciences, 40(5), 512-520. https://doi.org/10.1080/02640414.2021.2005236
  • Losnegard, T., Hallén, J., & Spencer, M. (2019). Physiological predictors of performance in elite ski cross athletes. International Journal of Sports Physiology and Performance, 14(10), 1374-1381. https://doi.org/10.1123/ijspp.2018-0799
  • Müller, E., Schwameder, H., & Raschner, C. (2022). Biomechanical factors influencing performance in ski mountaineering. Sports Biomechanics, 21(2), 189-202. https://doi.org/10.1080/14763141.2020.1754436
  • Pavlova, A. V., Mikhaylova, I. V., & Smirnova, E. A. (2023). Proprioception and agility: A systematic review. Journal of Motor Behavior, 55(1), 1-15. https://doi.org/10.1080/00222895.2022.2108567
  • Pellegrini, B., Fornasiero, A., & Schena, F. (2023). Fatigue dynamics in ski mountaineering: A field study. European Journal of Applied Physiology, 123(4), 867-877. https://doi.org/10.1007/s00421-022-05119-7
  • Praz, C., Grivel, D., & Kayser, B. (2014). Energy expenditure during ski mountaineering: Effects of speed and slope. European Journal of Applied Physiology, 114(6), 1249-1256. https://doi.org/10.1007/s00421-014-2852-7
  • Praz, C., Fasel, B., & Aminian, K. (2022). Technical determinants of performance in ski-mountaineering uphill races. Journal of Sports Sciences, 40(5), 512-520. https://doi.org/10.1080/02640414.2021.2005236
  • Reid, R. C., Cronin, J. B., & Sanders, R. (2019). Agility testing in freestyle skiers: A sport-specific approach. Journal of Sports Science and Medicine, 18(2), 253-260.
  • Román, P. Á. L., López-Sagar, J., & García-Pinillos, F. (2022). Effects of agility training on injury prevention in athletes: A meta-analysis. Journal of Strength and Conditioning Research, 36(3), 871-879. https://doi.org/10.1519/JSC.0000000000004231
  • Rogers, S. A., Hassmén, P., & Hunter, A. (2016). Agility in ice hockey: A review. Sports Biomechanics, 15(1), 1-16. https://doi.org/10.1080/14763141.2015.1119721
  • Sandbakk, Ø., Hegge, A. M., & Ettema, G. (2016). The physiology of world-class sprint skiers. Scandinavian Journal of Medicine & Science in Sports, 26(9), 1052-1060. https://doi.org/10.1111/sms.12537
  • Schenk, K., Faulhaber, M., & Gatterer, H. (2011). Physiological responses and energy expenditure during ski mountaineering. International Journal of Sports Medicine, 32(8), 611-617. https://doi.org/10.1055/s-0031-1273726
  • Sheppard, J. M., & Young, W. B. (2006). Agility literature review: Classifications, training and testing. Journal of Sports Sciences, 24(9), 919-932. https://doi.org/10.1080/02640410500457109
  • Sporis, G., Jukic, I., & Milanovic, L. (2008). The reliability and validity of a new agility test in soccer players. Journal of Strength and Conditioning Research, 22(3), 783-787. https://doi.org/10.1519/JSC.0b013e3181660f8a
  • Sporis, G., Jukic, I., Milanovic, L., & Vucetic, V. (2010). Reliability and factorial validity of agility tests for soccer players. Journal of Strength and Conditioning Research, 24(3), 679–686. https://doi.org/10.1519/JSC.0b013e3181c4d324
  • Stöggl, T., Björklund, G., & Holmberg, H. C. (2020). Training for endurance and strength: Lessons from skiing. Sports Medicine, 50(10), 1703-1725. https://doi.org/10.1007/s40279-020-01325-5
  • Supej, M., Kugovnik, O., & Nemec, B. (2013). Kinematic determination of the transition between carved and skidded turns in alpine skiing. Sports Biomechanics, 12(3), 241-253. https://doi.org/10.1080/14763141.2013.783627
  • Tomazin, K., Morin, J. B., & Stöggl, T. (2021). Force-velocity-power profiling in sprint cycling: Methodological and practical considerations. European Journal of Applied Physiology, 121(9), 2387-2399. https://doi.org/10.1007/s00421-021-04723-3
  • Tomlin, D. L., & Wenger, H. A. (2001). The relationship between aerobic fitness and recovery from high intensity intermittent exercise. Sports Medicine, 31(1), 1-11. https://doi.org/10.2165/00007256-200131010-00001
There are 39 citations in total.

Details

Primary Language English
Subjects Physical Fitness, Biomechanics in Sports Science
Journal Section Research Article
Authors

Burak Kural 0000-0002-0678-0189

Early Pub Date August 20, 2025
Publication Date August 20, 2025
Submission Date April 18, 2025
Acceptance Date July 28, 2025
Published in Issue Year 2025 Volume: 16 Issue: 2

Cite

APA Kural, B. (2025). Investigation of the Relationship Between Anaerobic Performance and Agility in Elite Ski Mountaineers. Spor Ve Performans Araştırmaları Dergisi, 16(2), 253-268. https://doi.org/10.17155/omuspd.1678883