Derleme
BibTex RIS Kaynak Göster

Yara İyileşmesinde Yeni Bir Yaklaşım Olarak Gümüş Nanopartiküller: Antibakteriyel Etkinliğe Odaklanma

Yıl 2025, Cilt: 3 Sayı: 1, 6 - 12, 31.01.2025

Öz

Nanoteknoloji, nano ölçekte gelişmiş işlevsel malzemeler geliştirmek için biyoloji, kimya, malzeme bilimi ve fizik gibi farklı bilimsel disiplinlerdeki araştırmacıları bir araya getiren çok disiplinli bir alandır. Nanoteknoloji tabanlı çözümler, özellikle nanopartiküller, mevcut terapi ve teşhis yöntemleriyle karşılaştırıldığında hem etkinlik hem de güvenlik açısından önemli avantajlar sağlayabildikleri için tıbbi araştırmalarda giderek daha yaygın hale gelmektedir. Son yıllarda yapılan çalışmalar ile gümüş nanopartiküller, Escherichia coli, Bacillus subtilis, Vibria cholera, Pseudomonas aeruginosa, Syphillis typhus ve Staphylococcus aureus gibi bulaşıcı organizmalara karşı oldukça güçlü antimikrobiyal ajanlar olduğu gösterilmiştir. Gümüş nanopartiküllerin bu denli geniş antibakteriyal aktivesi gümüşün tıp alanında, gümüş nanopartiküllerın ise biyomedikal alanın çeşitli alanlarında kullanımını etkilemiştir. AgNP'li biyomedikal ürünler tipik olarak yara iyileşmesini hızlandırarak ve enfekte olmuş hücrelerin hızlı parçalanması yoluyla bakterileri inhibe ederek bakteriyel enfeksiyonları önlemek için kullanılmaktadır.
Bu çalışmada gümüş nanopartiküllerin antibakteriyal mekanizması ve yara iyileştirmedeki etkisi üzerinde durulmuştur.

Etik Beyan

Not applicable

Destekleyen Kurum

This research did not receive any specific grant from funding agencies in the public, commercial, or not-forprofit sectors.

Kaynakça

  • 1. Almatroudi, A. (2020). Silver nanoparticles: synthesis, characterisation and biomedical applications. Open Life Sci. 19;15(1), 819-839. https://doi: 10.1515/biol-2020-0094.
  • 2. Astaneh, ME., Fereydouni, N. (2024). Silver Nanoparticles in 3D Printing: A New Frontier in Wound Healing. ACS Omega. 9(40), 41107-41129. https://doi: 10.1021/acsomega.
  • 3. Awad, MA., Al, Olayan, EM., Siddiqui, MI., Merghani, NM., Abdu-llah, Alsaif, SS., Alou, AS. (2021). Antileishmanial effect of silver nanoparticles: Green synthesis, characterization, in vivo and in vitro assessmen. Biomedicine & Pharmacotherapy., 137, 111294 https://doi: 10.1016/j.biopha.2021.111294.
  • 4. Aydin Acar, C. (2024). Green synthesis of metallic nanoparticles. https://app.biorender.com/profile/cigdem_aydinacar/templates/66360b549cf586aca4beebcf
  • 5. Bhubhanil, S., Talodthaisong, C., Khongkow, M., Namdee, K., Wongchitrat, P., Yingmema, W., Hutchison, JA., Lapmanee, S. (2021). Kulchat S Enhanced wound healing properties of guar gum/curcumin-stabilized silver nanoparticle hydrogels. Sci Rep. 8;11(1), 21836. https://doi: 10.1038/s41598-021-01262-x.
  • 6. Chugh, D., Viswamalya, VS., Das, B. (2021). Green synthesis of silver nanoparticles with algae and the importance of capping agents in the process. J Genet Eng Biotechnol. 24;19(1), 126. https://doi: 10.1186/s43141-021-00228-w.
  • 7. Diniz, FR., Maia, RCAP., Rannier, L., Andrade, LN., V, Chaud, M., da Silva, CF., Corrêa, CB., de Albuquerque, Junior, RLC., P da Costa, L., Shin, SR., Hassan, S., Sanchez-Lopez, E., Souto, EB., Severino, P.. (2020). Silver Nanoparticles-Composing Alginate/Gelatine Hydrogel Improves Wound Healing In Vivo Nanomaterials. 23;10(2), 390. https://doi: 10.3390/nano10020390.
  • 8. Dutt, Y., Pandey, RP., Dutt, M., Gupta, A., Vibhuti, A., Raj, VS., Chang, CM., Priyadarshini, A. (2023). Silver Nanoparticles Phytofabricated through Azadirachta indica: Anticancer, Apoptotic, and Wound-Healing Properties. Antibiotics (Basel). 9;12(1), 121. https://doi: 10.3390/antibiotics12010121.
  • 9. Erdem, E., & Aydın Acar, Ç. (2024). Selenium nanoparticles synthesized via green methods from Calluna vulgaris extract: Exploring their antioxidant and antibacterial activities. International Journal of Secondary Metabolite, 11(3), 462-471. https://doi.org/10.21448/ijsm.1415795
  • 10. Fong, S., Wood, F. (2006). Nanocrystalline silver dressings in wound management: a review. Int J Nanomedicine. 1(4), 441-9. https://doi: 10.2147/nano.2006.1.4.441.
  • 11. Gaikwad, S., Birla, S., Ingle, AP., Gade, A., Ingle, P., Golińska., Rai. (2022). Superior in vivo Wound-Healing Activity of Mycosynthesized Silver Nanogel on Different Wound Models in Rat. Front Microbiol. 2;13:881404. https://doi: 10.3389/fmicb.2022.881404.
  • 12. Habeeb, Rahuman, HB., Dhandapani, R., Narayanan, S., Palanivel, V., Paramasivam, R., Subbarayalu, R., Thangavelu, S., Muthupandian, S. (2022). Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET Nanobiotechnol. 16(4), 115-144. https://doi: 10.1049/nbt2.12078.
  • 13. Jangid, H., Singh, S., Kashyap, P., Singh, A., Kumar, G. (2024). Advancing biomedical applications: an in-depth analysis of silver nanoparticles in antibacterial, anticancer, and wound healing roles. Front Pharmacol. 8;15, 1438227. https://doi: 10.3389/fphar.2024.1438227.
  • 14. Kaabipour, S., Hemmati, S. (2021). A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures. Beilstein J. Nanotechnol. 12, 102–136 . https://doi: 10.3762/bjnano.12.9.
  • 15. Kowalczyk, P., Szymczak, M., Maciejewska, M., Laskowski, L., Laskowska ,M., Ostaszewski, R., Skiba, G., Franiak-Pietryga, I. (2021). All That Glitters Is Not Silver—A New Look at Microbiological and Medical Applications of Silver Nanoparticles. Int. J. Mol. Sci. 22(2), 854 https://doi: 10.3390/ijms22020854.
  • 16. Kruszka, D., Sawikowska, A., Kamalabai, Selvakesavan, R., Krajewski, P., Kachlicki, P., Franklin, G. (2020). Silver nanoparticles affect phenolic and phytoalexin composition of Arabidopsis thaliana. Sci Total Environ. 10;716, 135361. https://doi: 10.1016/j.scitotenv.2019.
  • 17. Lee, SH., Hyun, B. (2019). Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int J Mol Sci., 20(4), 865 https://doi: 10.3390/ijms20040865.
  • 18. Liao, C., Li, Y., Tjong, SJ. (2019). Bactericidal and Cytotoxic Properties of Silver Nanoparticles. Int J Mol Sci. 20(2), 449. https://doi: 10.3390/ijms20020449.
  • 19. Mousavi, SM., Hashemi, SA., Ghasemi, Y., Atapour, A., Amani, AM., Savar, Dashtaki, A., Babapoor, A., Arjmand, O. (2018). Green synthesis of silver nanoparticles toward bio and medical applications: review study. Artif Cells Nanomed Biotechnol. 46(sup3), S855-S872. https://doi: 10.1080/21691401.2018.1517769.
  • 20. Mousavi, SM., Hashemi, SA., Ghasemi, Y., Atapour, A., Amani, AM., Dashtaki, AS., Babapoor, A., Arjmand, O. (2018). Green synthesis of silver nanoparticles toward bio and medical applications: review study. Artificial Cells, Nanomedicine, and Biotechnology. 46, sup3, 855-872 https://doi: 10.1080/21691401.2018.1517769.
  • 21. Nakamura, S., Sato, M., Sato, Y., Ando, N., Takayama, T., Fujita, M., Ishihara, M. (2019). Synthesis and Application of Silver Nanoparticles (Ag NPs) for the Prevention of Infection in Healthcare Workers. Int. J. Mol. Sci. 20(15), 3620 https://doi: 10.3390/ijms20153620.
  • 22. Nie, P., Zhao, Y., Xu, H. (2023). Synthesis, applications, toxicity and toxicity mechanisms of silver nanoparticles: A review. Ecotoxicol Environ Saf. 15;253, 114636. https://doi: 10.1016/j.ecoenv.2023.
  • 23. Nqakala, ZB., Sibuyi, NRS., Fadaka, AO., Meyer, M., Onani, MO., Madiehe, AM. (2021) Advances in Nanotechnology towards Development of Silver Nanoparticle-Based Wound-Healing Agents. Int J Mol Sci., 19;22(20), 11272 https://doi: 10.3390/ijms222011272.
  • 24. Orlowski, P., Zmigrodzka, M., Tomaszewska, E., Ranoszek-Soliwoda, K., Czupryn, M., Antos-Bielska, M., Szemraj, J., Celichowski, G., Grobelny, J., Krzyzowska, M. (2018). Tannic acid-modified silver nanoparticles for wound healing: the importance of size. International Journal of Nanomedicine. 13:991-1007. https://doi: 10.2147/IJN.S154797.
  • 25. Pal, S., Tak, YK., Song, J.M. (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 73(6), 1712-20. https://doi: 10.1128/AEM.02218-06.
  • 26. Paladini, F., Pollini, M. (2019) Antimicrobial Silver Nanoparticles for Wound Healing Application: Progress and Future Trends. Materials (Basel). 12(16), 2540. https://doi: 10.3390/ma12162540.
  • 27. Prabhu, S., Poulose E.K., (2012). Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International Nano Letters. 2, 32 https://doi: 10.1186/2228-5326-2-32
  • 28. Rybka, M., Mazurek, Ł., Konop, M. (2022). Beneficial Effect of Wound Dressings Containing Silver and Silver Nanoparticles in Wound Healing-From Experimental Studies to Clinical Practice. Life (Basel). 26;13(1), 69. https://doi: 10.3390/life13010069.
  • 29. Sari, B.R., Yesilot, S., Ozmen, Aydin Acar, C. (2024) Superior In Vivo Wound-Healing Activity of Biosynthesized Silver Nanoparticles with Nepeta cataria (Catnip) on Excision Wound Model in Rat. Biol Trace Elem Res https://doi.org/10.1007/s12011-024-04268-4
  • 30. Sharma, NK., Vishwakarma, J., Rai, S., Alomar, TS., AlMasoud, N., Bhattarai, A. (2022). Green Route Synthesis and Characterization Techniques of Silver Nanoparticles and Their Biological Adeptness. ACS Omega. 25;7(31), 27004-27020. https://doi: 10.1021/acsomega.2c01400.
  • 31. Shehabeldine, AM., Salem, SSi, Ali, OMi, Abd-Elsalam, KA., Elkady, FM., Hashem, AH. (2022). Multifunctional Silver Nanoparticles Based on Chitosan: Antibacterial, Antibiofilm, Antifungal, Antioxidant, and Wound-Healing Activities. J Fungi (Basel). 8;8(6), 612. https://doi: 10.3390/jof8060612.
  • 32. Shi, C., Wang, C., Liu, H., Li, Q., Li, R., Zhang, Y., Liu, Y., Shao, Y., Wang, J. (2020). Selection of Appropriate Wound Dressing for Various Wounds Front. Bioeng. Biotechnol. Front Bioeng Biotechnol. 19;8, 182. . https://doi: 10.3389/fbioe.2020.00182.
  • 33. Singh, M., Thakur, V., Kumar, V., Raj, M., Gupta, S., Devi, N., Upadhyay, SK ., Macho, MK., Banerjee, A., Ewe, D., Saurav, K. (2022). Silver Nanoparticles and Its Mechanistic Insight for Chronic Wound Healing: Review on Recent. Progress Molecules. 27(17), 5587. https://doi: 10.3390/molecules27175587.
  • 34. Thanh, NT., Hieu, MH., Phuong,, NTM., Thuan TDB., Thu, HNT., Thai, VP., Minh, TD., Dai, HN., Vo, VT., Thi, HN. (2018). Optimization and characterization of electrospun polycaprolactone coated with gelatin-silver nanoparticles for wound healing application. Materials Science and Engineering. 91, 318-329. https://doi: 10.1016/j.msec.2018.05.039.
  • 35. Toczek, J., Sadłocha, M., Major, K., Stojko, R. (2022). Benefit of Silver and Gold Nanoparticles in Wound Healing Process after Endometrial Cancer Protocol. Biomedicines. 16;10(3), 679. https://doi: 10.3390/biomedicines10030679.
  • 36. Vijayakumar, G., Kim, HJ., Rangarajulu, SK. (2023). In Vitro Antibacterial and Wound Healing Activities Evoked by Silver Nanoparticles Synthesized through Probiotic Bacteria. Antibiotics (Basel). 10;12(1), 141. https://doi: 10.3390/antibiotics12010141.
  • 37. Xu, L., Wang, YY., Huang, J., Chen, CY., Wang, ZX., Xie, H. (2020). Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics. 10(20), 8996-9031. https://doi: 10.7150/thno.45413.
  • 38. Yin, IX., Zhang, J., Zhao, IS., Mei, ML., Li, Q., Chu, CH. (2020). The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. International Journal of Nanomedicine. 15, 2555—2562 https://doi: 10.2147/IJN.S246764.
  • 39. Younis, NS., Mohamed, ME., El, Semary, NA. (2022). Green Synthesis of Silver Nanoparticles by the Cyanobacteria Synechocystis sp.: Characterization, Antibacterial and Diabetic Wound-Healing Actions. Mar Drugs. 20(1), 56 https://doi: 10.3390/md20010056.

Silver Nanoparticles as a New Approach to Wound Healing: Focus on Antibacterial Efficacy

Yıl 2025, Cilt: 3 Sayı: 1, 6 - 12, 31.01.2025

Öz

Nanotechnology is a multidisciplinary field that brings together researchers from various scientific disciplines, including biology, chemistry, materials science, and physics, to develop advanced functional materials on a nanoscale. Nanotechnology-based solutions, particularly nanoparticles, are becoming increasingly prevalent in medical research due to their significant advantages in both efficacy and safety compared to conventional therapies and diagnostic methods. Recent studies have shown that silver nanoparticles are highly potent antimicrobial agents against infectious organisms such as Escherichia coli, Bacillus subtilis, Vibrio cholera, Pseudomonas aeruginosa, Syphillis typhus, and Staphylococcus aureus. This broad antibacterial activity of silver nanoparticles has influenced the use of silver in medicine and expanded the applications of silver nanoparticles across various fields of biomedicine. Biomedical products containing AgNPs are typically used to accelerate wound healing and prevent bacterial infections by inhibiting bacteria through the rapid breakdown of infected cells.
This study focuses on the antibacterial mechanism of silver nanoparticles and their effect on wound healing.

Kaynakça

  • 1. Almatroudi, A. (2020). Silver nanoparticles: synthesis, characterisation and biomedical applications. Open Life Sci. 19;15(1), 819-839. https://doi: 10.1515/biol-2020-0094.
  • 2. Astaneh, ME., Fereydouni, N. (2024). Silver Nanoparticles in 3D Printing: A New Frontier in Wound Healing. ACS Omega. 9(40), 41107-41129. https://doi: 10.1021/acsomega.
  • 3. Awad, MA., Al, Olayan, EM., Siddiqui, MI., Merghani, NM., Abdu-llah, Alsaif, SS., Alou, AS. (2021). Antileishmanial effect of silver nanoparticles: Green synthesis, characterization, in vivo and in vitro assessmen. Biomedicine & Pharmacotherapy., 137, 111294 https://doi: 10.1016/j.biopha.2021.111294.
  • 4. Aydin Acar, C. (2024). Green synthesis of metallic nanoparticles. https://app.biorender.com/profile/cigdem_aydinacar/templates/66360b549cf586aca4beebcf
  • 5. Bhubhanil, S., Talodthaisong, C., Khongkow, M., Namdee, K., Wongchitrat, P., Yingmema, W., Hutchison, JA., Lapmanee, S. (2021). Kulchat S Enhanced wound healing properties of guar gum/curcumin-stabilized silver nanoparticle hydrogels. Sci Rep. 8;11(1), 21836. https://doi: 10.1038/s41598-021-01262-x.
  • 6. Chugh, D., Viswamalya, VS., Das, B. (2021). Green synthesis of silver nanoparticles with algae and the importance of capping agents in the process. J Genet Eng Biotechnol. 24;19(1), 126. https://doi: 10.1186/s43141-021-00228-w.
  • 7. Diniz, FR., Maia, RCAP., Rannier, L., Andrade, LN., V, Chaud, M., da Silva, CF., Corrêa, CB., de Albuquerque, Junior, RLC., P da Costa, L., Shin, SR., Hassan, S., Sanchez-Lopez, E., Souto, EB., Severino, P.. (2020). Silver Nanoparticles-Composing Alginate/Gelatine Hydrogel Improves Wound Healing In Vivo Nanomaterials. 23;10(2), 390. https://doi: 10.3390/nano10020390.
  • 8. Dutt, Y., Pandey, RP., Dutt, M., Gupta, A., Vibhuti, A., Raj, VS., Chang, CM., Priyadarshini, A. (2023). Silver Nanoparticles Phytofabricated through Azadirachta indica: Anticancer, Apoptotic, and Wound-Healing Properties. Antibiotics (Basel). 9;12(1), 121. https://doi: 10.3390/antibiotics12010121.
  • 9. Erdem, E., & Aydın Acar, Ç. (2024). Selenium nanoparticles synthesized via green methods from Calluna vulgaris extract: Exploring their antioxidant and antibacterial activities. International Journal of Secondary Metabolite, 11(3), 462-471. https://doi.org/10.21448/ijsm.1415795
  • 10. Fong, S., Wood, F. (2006). Nanocrystalline silver dressings in wound management: a review. Int J Nanomedicine. 1(4), 441-9. https://doi: 10.2147/nano.2006.1.4.441.
  • 11. Gaikwad, S., Birla, S., Ingle, AP., Gade, A., Ingle, P., Golińska., Rai. (2022). Superior in vivo Wound-Healing Activity of Mycosynthesized Silver Nanogel on Different Wound Models in Rat. Front Microbiol. 2;13:881404. https://doi: 10.3389/fmicb.2022.881404.
  • 12. Habeeb, Rahuman, HB., Dhandapani, R., Narayanan, S., Palanivel, V., Paramasivam, R., Subbarayalu, R., Thangavelu, S., Muthupandian, S. (2022). Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET Nanobiotechnol. 16(4), 115-144. https://doi: 10.1049/nbt2.12078.
  • 13. Jangid, H., Singh, S., Kashyap, P., Singh, A., Kumar, G. (2024). Advancing biomedical applications: an in-depth analysis of silver nanoparticles in antibacterial, anticancer, and wound healing roles. Front Pharmacol. 8;15, 1438227. https://doi: 10.3389/fphar.2024.1438227.
  • 14. Kaabipour, S., Hemmati, S. (2021). A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures. Beilstein J. Nanotechnol. 12, 102–136 . https://doi: 10.3762/bjnano.12.9.
  • 15. Kowalczyk, P., Szymczak, M., Maciejewska, M., Laskowski, L., Laskowska ,M., Ostaszewski, R., Skiba, G., Franiak-Pietryga, I. (2021). All That Glitters Is Not Silver—A New Look at Microbiological and Medical Applications of Silver Nanoparticles. Int. J. Mol. Sci. 22(2), 854 https://doi: 10.3390/ijms22020854.
  • 16. Kruszka, D., Sawikowska, A., Kamalabai, Selvakesavan, R., Krajewski, P., Kachlicki, P., Franklin, G. (2020). Silver nanoparticles affect phenolic and phytoalexin composition of Arabidopsis thaliana. Sci Total Environ. 10;716, 135361. https://doi: 10.1016/j.scitotenv.2019.
  • 17. Lee, SH., Hyun, B. (2019). Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int J Mol Sci., 20(4), 865 https://doi: 10.3390/ijms20040865.
  • 18. Liao, C., Li, Y., Tjong, SJ. (2019). Bactericidal and Cytotoxic Properties of Silver Nanoparticles. Int J Mol Sci. 20(2), 449. https://doi: 10.3390/ijms20020449.
  • 19. Mousavi, SM., Hashemi, SA., Ghasemi, Y., Atapour, A., Amani, AM., Savar, Dashtaki, A., Babapoor, A., Arjmand, O. (2018). Green synthesis of silver nanoparticles toward bio and medical applications: review study. Artif Cells Nanomed Biotechnol. 46(sup3), S855-S872. https://doi: 10.1080/21691401.2018.1517769.
  • 20. Mousavi, SM., Hashemi, SA., Ghasemi, Y., Atapour, A., Amani, AM., Dashtaki, AS., Babapoor, A., Arjmand, O. (2018). Green synthesis of silver nanoparticles toward bio and medical applications: review study. Artificial Cells, Nanomedicine, and Biotechnology. 46, sup3, 855-872 https://doi: 10.1080/21691401.2018.1517769.
  • 21. Nakamura, S., Sato, M., Sato, Y., Ando, N., Takayama, T., Fujita, M., Ishihara, M. (2019). Synthesis and Application of Silver Nanoparticles (Ag NPs) for the Prevention of Infection in Healthcare Workers. Int. J. Mol. Sci. 20(15), 3620 https://doi: 10.3390/ijms20153620.
  • 22. Nie, P., Zhao, Y., Xu, H. (2023). Synthesis, applications, toxicity and toxicity mechanisms of silver nanoparticles: A review. Ecotoxicol Environ Saf. 15;253, 114636. https://doi: 10.1016/j.ecoenv.2023.
  • 23. Nqakala, ZB., Sibuyi, NRS., Fadaka, AO., Meyer, M., Onani, MO., Madiehe, AM. (2021) Advances in Nanotechnology towards Development of Silver Nanoparticle-Based Wound-Healing Agents. Int J Mol Sci., 19;22(20), 11272 https://doi: 10.3390/ijms222011272.
  • 24. Orlowski, P., Zmigrodzka, M., Tomaszewska, E., Ranoszek-Soliwoda, K., Czupryn, M., Antos-Bielska, M., Szemraj, J., Celichowski, G., Grobelny, J., Krzyzowska, M. (2018). Tannic acid-modified silver nanoparticles for wound healing: the importance of size. International Journal of Nanomedicine. 13:991-1007. https://doi: 10.2147/IJN.S154797.
  • 25. Pal, S., Tak, YK., Song, J.M. (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 73(6), 1712-20. https://doi: 10.1128/AEM.02218-06.
  • 26. Paladini, F., Pollini, M. (2019) Antimicrobial Silver Nanoparticles for Wound Healing Application: Progress and Future Trends. Materials (Basel). 12(16), 2540. https://doi: 10.3390/ma12162540.
  • 27. Prabhu, S., Poulose E.K., (2012). Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International Nano Letters. 2, 32 https://doi: 10.1186/2228-5326-2-32
  • 28. Rybka, M., Mazurek, Ł., Konop, M. (2022). Beneficial Effect of Wound Dressings Containing Silver and Silver Nanoparticles in Wound Healing-From Experimental Studies to Clinical Practice. Life (Basel). 26;13(1), 69. https://doi: 10.3390/life13010069.
  • 29. Sari, B.R., Yesilot, S., Ozmen, Aydin Acar, C. (2024) Superior In Vivo Wound-Healing Activity of Biosynthesized Silver Nanoparticles with Nepeta cataria (Catnip) on Excision Wound Model in Rat. Biol Trace Elem Res https://doi.org/10.1007/s12011-024-04268-4
  • 30. Sharma, NK., Vishwakarma, J., Rai, S., Alomar, TS., AlMasoud, N., Bhattarai, A. (2022). Green Route Synthesis and Characterization Techniques of Silver Nanoparticles and Their Biological Adeptness. ACS Omega. 25;7(31), 27004-27020. https://doi: 10.1021/acsomega.2c01400.
  • 31. Shehabeldine, AM., Salem, SSi, Ali, OMi, Abd-Elsalam, KA., Elkady, FM., Hashem, AH. (2022). Multifunctional Silver Nanoparticles Based on Chitosan: Antibacterial, Antibiofilm, Antifungal, Antioxidant, and Wound-Healing Activities. J Fungi (Basel). 8;8(6), 612. https://doi: 10.3390/jof8060612.
  • 32. Shi, C., Wang, C., Liu, H., Li, Q., Li, R., Zhang, Y., Liu, Y., Shao, Y., Wang, J. (2020). Selection of Appropriate Wound Dressing for Various Wounds Front. Bioeng. Biotechnol. Front Bioeng Biotechnol. 19;8, 182. . https://doi: 10.3389/fbioe.2020.00182.
  • 33. Singh, M., Thakur, V., Kumar, V., Raj, M., Gupta, S., Devi, N., Upadhyay, SK ., Macho, MK., Banerjee, A., Ewe, D., Saurav, K. (2022). Silver Nanoparticles and Its Mechanistic Insight for Chronic Wound Healing: Review on Recent. Progress Molecules. 27(17), 5587. https://doi: 10.3390/molecules27175587.
  • 34. Thanh, NT., Hieu, MH., Phuong,, NTM., Thuan TDB., Thu, HNT., Thai, VP., Minh, TD., Dai, HN., Vo, VT., Thi, HN. (2018). Optimization and characterization of electrospun polycaprolactone coated with gelatin-silver nanoparticles for wound healing application. Materials Science and Engineering. 91, 318-329. https://doi: 10.1016/j.msec.2018.05.039.
  • 35. Toczek, J., Sadłocha, M., Major, K., Stojko, R. (2022). Benefit of Silver and Gold Nanoparticles in Wound Healing Process after Endometrial Cancer Protocol. Biomedicines. 16;10(3), 679. https://doi: 10.3390/biomedicines10030679.
  • 36. Vijayakumar, G., Kim, HJ., Rangarajulu, SK. (2023). In Vitro Antibacterial and Wound Healing Activities Evoked by Silver Nanoparticles Synthesized through Probiotic Bacteria. Antibiotics (Basel). 10;12(1), 141. https://doi: 10.3390/antibiotics12010141.
  • 37. Xu, L., Wang, YY., Huang, J., Chen, CY., Wang, ZX., Xie, H. (2020). Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics. 10(20), 8996-9031. https://doi: 10.7150/thno.45413.
  • 38. Yin, IX., Zhang, J., Zhao, IS., Mei, ML., Li, Q., Chu, CH. (2020). The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. International Journal of Nanomedicine. 15, 2555—2562 https://doi: 10.2147/IJN.S246764.
  • 39. Younis, NS., Mohamed, ME., El, Semary, NA. (2022). Green Synthesis of Silver Nanoparticles by the Cyanobacteria Synechocystis sp.: Characterization, Antibacterial and Diabetic Wound-Healing Actions. Mar Drugs. 20(1), 56 https://doi: 10.3390/md20010056.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klinik Tıp Bilimleri (Diğer)
Bölüm Derlemeler
Yazarlar

Berfin Rumeysa Sarı 0000-0002-1747-4785

Çiğdem Aydın Acar 0000-0002-1311-2314

Yayımlanma Tarihi 31 Ocak 2025
Gönderilme Tarihi 10 Kasım 2024
Kabul Tarihi 16 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 3 Sayı: 1

Kaynak Göster

APA Sarı, B. R., & Aydın Acar, Ç. (2025). Silver Nanoparticles as a New Approach to Wound Healing: Focus on Antibacterial Efficacy. OneHealth Plus Journal, 3(1), 6-12.