Research Article
BibTex RIS Cite

Machine Learning Techniques for Cafeteria Demand Forecasting: An Institutional Case

Year 2025, Volume: 22 Issue: 3, 532 - 549, 31.05.2025
https://doi.org/10.26466/opusjsr.1649256

Abstract

This research investigates the application of machine learning techniques for cafeteria demand forecasting within institutional settings, addressing critical operational challenges in food service management. Using a comprehensive methodological framework, the study analyzes turnstile entry data from an academic institution across November-December 2023 to develop and evaluate three complementary forecasting models: XGBoost with time-based features, Long Short-Term Memory (LSTM) networks, and Prophet models with domain-specific components. The comparative analysis reveals differentiated performance characteristics across various forecasting dimensions, with XGBoost demonstrating superior accuracy for daily forecasting (MAE=16.23, MAPE=8.32%), LSTM excelling at high-resolution 15-minute interval prediction (MAE=5.37, MAPE=11.64%), and Prophet exhibiting greater stability for extended forecast horizons. A weighted ensemble methodology integrating these complementary approaches yields consistent performance improvements across multiple evaluation metrics, achieving 4.7% reduction in daily MAE and 3.4% reduction in 15-minute interval MAE compared to the best individual models. Feature importance analysis reveals the significance of recent historical patterns, weekly cyclical components, and academic calendar effects, validating the theoretical multi-level temporal structure of institutional demand. The operational impact assessment demonstrates substantial potential benefits, including estimated food waste reduction of 6.2%, enhanced service level maintenance, and improved resource utilization. This research contributes methodological advancements through its multi-resolution forecasting framework, systematic feature engineering approach, and context-sensitive ensemble integration methodology, while providing practical implementation guidance for institutional food service operations seeking to enhance operational efficiency and sustainability through improved demand prediction.

References

  • Athanasopoulos, G., Hyndman, R., Kourentzes, N., & Petropoulos, F. (2017). Forecasting with temporal hierarchies. In European Journal of Operational Research (Vol. 262, Issue 1, p. 60). Elsevier BV. https://doi.org/10.1016/-j.ejor.2017.02.046
  • Aulia, N., & Saputro, D. R. S. (2021). Generalized Space Time Autoregressive Integrated Moving Average with Exogenous (GSTARIMA-X) Models. In Journal of Physics Conference Series (Vol. 1808, Issue 1, p. 12052). IOP Publishing. https://doi.org/10.1088/1742-6596/1808/1/012052
  • Bandara, K., Hewamalage, H., Liu, Y., Kang, Y., & Bergmeir, C. (2021). Improving the accuracy of global forecasting models using time series data augmentation. In Pattern Recognition (Vol. 120, p. 108148). Elsevier BV. https://doi.org/10.1016/j.patcog.2021.108148
  • Bertsimas, D., Orfanoudaki, A., & Pawlowski, C. (2020). Imputation of clinical covariates in time series. In Machine Learning (Vol. 110, Issue 1, p. 185). Springer Science+Business Media. https://doi.org/10.1007/s10994-020-05923-2
  • Fayaz, S. A., Zaman, M., Kaul, S., & Butt, M. A. (2022). Is Deep Learning on Tabular Data Enough? An Assessment. In International Journal of Advanced Computer Science and Applications (Vol. 13, Issue 4). Science and Information Organization. https://doi.org/10.14569/-ijacsa.2022.0130454
  • Gopalakrishna‐Remani, V., Cater, J. J., & Massey, J. J. (2016). Restaurant operations at the Rose Capital Inn: a case study exercise. In The CASE Journal (Vol. 12, Issue 1, p. 104). Emerald Publishing Limited. https://doi.org/10.1108/-tcj-11-2014-0063
  • Hasan, F., Xu, K. S., Foulds, J., & Pan, S. (2021). Learning User Embeddings from Temporal Social Media Data: A Survey. In arXiv (Cornell University). Cornell University. https://doi.org/-10.48550/arxiv.2105.07996
  • Huang, Q. (2021). Design and Implementation of University Central Kitchen Logistics Management System. In E3S Web of Conferences (Vol. 257, p. 2035). EDP Sciences. https://doi.org/10.1051/e3sconf/202125702035
  • Hurst, A. L. M. (1997). Emerging Trends in College and University Food Service. In Journal of College & University Foodservice (Vol. 3, Issue 3, p. 17). Taylor & Francis. https://doi.org/10.1300/j278v03n03_03
  • Johnston, F., & Boylan, J. E. (1996). Forecasting for Items with Intermittent Demand. In Journal of the Operational Research Society (Vol. 47, Issue 1, p. 113). Palgrave Macmillan. https://doi.org/10.1057/jors.1996.10
  • Karaman, İ., Pinto, R., & Graça, G. (2018). Metabolomics Data Preprocessing: From Raw Data to Features for Statistical Analysis. In Comprehensive analytical chemistry (p. 197). Elsevier BV. https://doi.org/10.1016/bs.coac.2018.08.-003
  • Kiani, K., & Saleem, K. (2017). K-Nearest Temperature Trends. https://doi.org/10.1145/307-7584.3077592
  • Kim, H. J., McCahon, C. S., & Miller, J. L. (2003). Assessing Service Quality in Korean Casual-Dining Restaurants Using DINESERV. In Journal of Foodservice Business Research (Vol. 6, Issue 1, p. 67). Taylor & Francis. https://doi.org/10.1300/j369v06n01_05
  • Kimes, S. E. (2005). Restaurant revenue management: Could it work? In Journal of Revenue and Pricing Management (Vol. 4, Issue 1, p. 95). Palgrave Macmillan. https://doi.org/10.1057-/palgrave.rpm.5170132
  • Mellou, K., Marshall, L., Chintalapudi, K., Jaillet, P., & Menache, I. (2020). Optimizing Onsite Food Services at Scale. In Proceedings of the 30th International Conference on Advances in Geographic Information Systems (p. 618). https://doi.org/10.1145/3397536.3422266
  • Nylund, K., Gururangan, S., & Smith, N. A. (2024). Time is Encoded in the Weights of Finetuned Language Models (p. 2571). https://doi.org/10.18653/v1/2024.acl-long.141
  • Posch, K., Truden, C., Hungerländer, P., & Pilz, J. (2021). A Bayesian approach for predicting food and beverage sales in staff canteens and restaurants. In International Journal of Forecasting (Vol. 38, Issue 1, p. 321). Elsevier BV. https://doi.org/10.1016/j.ijforcast.2021.06.001
  • Raffoul, E., Tuo, M., Zhao, C., Zhao, T., Ling, M., & Li, X. (2024). Comparative Analysis of Machine Learning Models for Short-Term Distribution System Load Forecasting. In arXiv (Cornell University). Cornell University. https://doi.org/10.48550/arxiv.2411.16118
  • Roh, Y., Heo, G., & Whang, S. E. (2018). A Survey on Data Collection for Machine Learning: a Big Data -- AI Integration Perspective. In arXiv (Cornell University). Cornell University. https://doi.org/10.48550/arxiv.1811.03402
  • Smith, E. M., Nantes, A., Hogue, A., & Papas, I. (2017). Forecasting Customer Behaviour in Constrained E-Commerce Platforms. https://doi.org/10.1049/cp.2017.0163
  • Smith, E. M., Nantes, A., Hogue, A., & Papas, I. (2017). Forecasting Customer Behaviour in Constrained E-Commerce Platforms. https://doi.org/10.1049/cp.2017.0163
  • Soo, S., & Seo, B.-K. (2019). Cafeteria Use by Students and Effect of Selection Attributes on Satisfaction. In Journal of Asian Finance Economics and Business (Vol. 6, Issue 1, p. 187). Korean Distribution Science Association. https://doi.org/10.13106/jafeb.2019.vol6.no1.187
  • Taylor, S. J., & Letham, B. (2017). Forecasting at Scale. In The American Statistician (Vol. 72, Issue 1, p. 37). Taylor & Francis. https://doi.org/10.-1080/00031305.2017.1380080
  • Vizzoto, F., Testa, F., & Iraldo, F. (2021). Strategies to reduce food waste in the foodservices sector: A systematic review [Review of Strategies to reduce food waste in the foodservices sector: A systematic review]. International Journal of Hospitality Management, 95, 102933. Elsevier BV. https://doi.org/10.1016/j.ijhm.-2021.102933
  • Vollmer, M., Glampson, B., Mellan, T. A., Mishra, S., Mercuri, L., Costello, C., Klaber, R., Cooke, G., Flaxman, S., & Bhatt, S. (2021). A unified machine learning approach to time series forecasting applied to demand at emergency departments. In BMC Emergency Medicine (Vol. 21, Issue 1). BioMed Central. https://doi.org/10.1186/s12873-020-00395-y
  • Weatherford, L., & Kimes, S. E. (2003). A comparison of forecasting methods for hotel revenue management. In International Journal of Forecasting (Vol. 19, Issue 3, p. 401). Elsevier BV. https://doi.org/10.1016/s0169-2070(02)00011-0
  • Wu, H., & Meng, F. (2020). Review on Evaluation Criteria of Machine Learning Based on Big Data. In Journal of Physics Conference Series (Vol. 1486, Issue 5, p. 52026). IOP Publishing. https://doi.org/10.1088/17426596/1486/5/052026
  • Yanchenko, A. K., Deng, D. D., Li, J., Cron, A., & West, M. (2023). Hierarchical dynamic modelling for individualized Bayesian forecasting. In Journal of the Royal Statistical Society Series C (Applied Statistics) (Vol. 72, Issue 1, p. 144). Oxford University Press. https://doi.org/10.1093/jrsssc/qlad002
  • Yanchenko, A. K., Deng, D. D., Li, J., Cron, A., & West, M. (2023). Hierarchical dynamic modelling for individualized Bayesian forecasting. In Journal of the Royal Statistical Society Series C (Applied Statistics) (Vol. 72, Issue 1, p. 144). Oxford University Press. https://doi.org/10.1093/jrsssc/qlad002
  • Yeh, W., Lin, Y., Liang, Y.-C., & Lai, C.-M. (2021). Convolution Neural Network Hyperparameter Optimization Using Simplified Swarm Optimization. In arXiv (Cornell University). Cornell University. https://doi.org/10.48550-/arXiv.2103.

Kafeterya Talep Tahmini için Makine Öğrenimi Teknikleri: Kurumsal Bir Vaka Çalışması

Year 2025, Volume: 22 Issue: 3, 532 - 549, 31.05.2025
https://doi.org/10.26466/opusjsr.1649256

Abstract

Bu araştırma, kurumsal ortamlarda kafeterya talep tahmini için makine öğrenimi tekniklerinin uygulanmasını araştırmakta ve gıda hizmeti yönetimindeki kritik operasyonel zorlukları ele almaktadır. Kapsamlı bir metodolojik çerçeve kullanan çalışma, üç tamamlayıcı tahmin modeli geliştirmek ve değerlendirmek için Kasım-Aralık 2023 tarihleri arasında bir akademik kurumdan alınan turnike giriş verilerini analiz etmektedir: Zaman tabanlı özelliklere sahip XGBoost, Uzun Kısa Süreli Bellek (LSTM) ağları ve alana özgü bileşenlere sahip Prophet modelleri kullanılmıştır. Karşılaştırmalı analiz, çeşitli tahmin boyutlarında farklılaşan performans özelliklerini ortaya koymaktadır; XGBoost günlük tahmin için üstün doğruluk gösterirken (MAE = 16.23, MAPE =% 8.32), LSTM yüksek çözünürlüklü 15 dakikalık aralık tahmininde mükemmeldir (MAE = 5.37, MAPE =% 11.64) ve Prophet genişletilmiş tahminler için daha fazla istikrar sergilemektedir. Bu tamamlayıcı yaklaşımları entegre eden ağırlıklı bir topluluk metodolojisi, birden fazla değerlendirme ölçütünde tutarlı performans iyileştirmeleri sağlamakta ve en iyi bireysel modellere kıyasla günlük MAE'de %4,7 ve 15 dakikalık aralık MAE'de %3,4 azalma göstermektedir. Özellik önem analizi, kurumsal talebin teorik çok seviyeli zamansal yapısını doğrulayarak yakın geçmişteki tarihsel modellerin, haftalık döngüsel bileşenlerin ve akademik takvim etkilerinin önemini ortaya koymaktadır. Operasyonel etki değerlendirmesi, tahmini %6,2'lik gıda atığı azaltımı, gelişmiş hizmet seviyesi bakımı ve iyileştirilmiş kaynak kullanımı dahil olmak üzere önemli potansiyel faydalar göstermektedir. Bu araştırma, çok çözünürlüklü tahmin çerçevesi, sistematik özellik mühendisliği yaklaşımı ve bağlama duyarlı topluluk entegrasyon metodolojisi aracılığıyla metodolojik ilerlemelere katkıda bulunurken, gelişmiş talep tahmini yoluyla operasyonel verimliliği ve sürdürülebilirliği artırmak isteyen kurumsal gıda hizmeti operasyonları için pratik uygulama kılavuzu sağlamaktadır.

References

  • Athanasopoulos, G., Hyndman, R., Kourentzes, N., & Petropoulos, F. (2017). Forecasting with temporal hierarchies. In European Journal of Operational Research (Vol. 262, Issue 1, p. 60). Elsevier BV. https://doi.org/10.1016/-j.ejor.2017.02.046
  • Aulia, N., & Saputro, D. R. S. (2021). Generalized Space Time Autoregressive Integrated Moving Average with Exogenous (GSTARIMA-X) Models. In Journal of Physics Conference Series (Vol. 1808, Issue 1, p. 12052). IOP Publishing. https://doi.org/10.1088/1742-6596/1808/1/012052
  • Bandara, K., Hewamalage, H., Liu, Y., Kang, Y., & Bergmeir, C. (2021). Improving the accuracy of global forecasting models using time series data augmentation. In Pattern Recognition (Vol. 120, p. 108148). Elsevier BV. https://doi.org/10.1016/j.patcog.2021.108148
  • Bertsimas, D., Orfanoudaki, A., & Pawlowski, C. (2020). Imputation of clinical covariates in time series. In Machine Learning (Vol. 110, Issue 1, p. 185). Springer Science+Business Media. https://doi.org/10.1007/s10994-020-05923-2
  • Fayaz, S. A., Zaman, M., Kaul, S., & Butt, M. A. (2022). Is Deep Learning on Tabular Data Enough? An Assessment. In International Journal of Advanced Computer Science and Applications (Vol. 13, Issue 4). Science and Information Organization. https://doi.org/10.14569/-ijacsa.2022.0130454
  • Gopalakrishna‐Remani, V., Cater, J. J., & Massey, J. J. (2016). Restaurant operations at the Rose Capital Inn: a case study exercise. In The CASE Journal (Vol. 12, Issue 1, p. 104). Emerald Publishing Limited. https://doi.org/10.1108/-tcj-11-2014-0063
  • Hasan, F., Xu, K. S., Foulds, J., & Pan, S. (2021). Learning User Embeddings from Temporal Social Media Data: A Survey. In arXiv (Cornell University). Cornell University. https://doi.org/-10.48550/arxiv.2105.07996
  • Huang, Q. (2021). Design and Implementation of University Central Kitchen Logistics Management System. In E3S Web of Conferences (Vol. 257, p. 2035). EDP Sciences. https://doi.org/10.1051/e3sconf/202125702035
  • Hurst, A. L. M. (1997). Emerging Trends in College and University Food Service. In Journal of College & University Foodservice (Vol. 3, Issue 3, p. 17). Taylor & Francis. https://doi.org/10.1300/j278v03n03_03
  • Johnston, F., & Boylan, J. E. (1996). Forecasting for Items with Intermittent Demand. In Journal of the Operational Research Society (Vol. 47, Issue 1, p. 113). Palgrave Macmillan. https://doi.org/10.1057/jors.1996.10
  • Karaman, İ., Pinto, R., & Graça, G. (2018). Metabolomics Data Preprocessing: From Raw Data to Features for Statistical Analysis. In Comprehensive analytical chemistry (p. 197). Elsevier BV. https://doi.org/10.1016/bs.coac.2018.08.-003
  • Kiani, K., & Saleem, K. (2017). K-Nearest Temperature Trends. https://doi.org/10.1145/307-7584.3077592
  • Kim, H. J., McCahon, C. S., & Miller, J. L. (2003). Assessing Service Quality in Korean Casual-Dining Restaurants Using DINESERV. In Journal of Foodservice Business Research (Vol. 6, Issue 1, p. 67). Taylor & Francis. https://doi.org/10.1300/j369v06n01_05
  • Kimes, S. E. (2005). Restaurant revenue management: Could it work? In Journal of Revenue and Pricing Management (Vol. 4, Issue 1, p. 95). Palgrave Macmillan. https://doi.org/10.1057-/palgrave.rpm.5170132
  • Mellou, K., Marshall, L., Chintalapudi, K., Jaillet, P., & Menache, I. (2020). Optimizing Onsite Food Services at Scale. In Proceedings of the 30th International Conference on Advances in Geographic Information Systems (p. 618). https://doi.org/10.1145/3397536.3422266
  • Nylund, K., Gururangan, S., & Smith, N. A. (2024). Time is Encoded in the Weights of Finetuned Language Models (p. 2571). https://doi.org/10.18653/v1/2024.acl-long.141
  • Posch, K., Truden, C., Hungerländer, P., & Pilz, J. (2021). A Bayesian approach for predicting food and beverage sales in staff canteens and restaurants. In International Journal of Forecasting (Vol. 38, Issue 1, p. 321). Elsevier BV. https://doi.org/10.1016/j.ijforcast.2021.06.001
  • Raffoul, E., Tuo, M., Zhao, C., Zhao, T., Ling, M., & Li, X. (2024). Comparative Analysis of Machine Learning Models for Short-Term Distribution System Load Forecasting. In arXiv (Cornell University). Cornell University. https://doi.org/10.48550/arxiv.2411.16118
  • Roh, Y., Heo, G., & Whang, S. E. (2018). A Survey on Data Collection for Machine Learning: a Big Data -- AI Integration Perspective. In arXiv (Cornell University). Cornell University. https://doi.org/10.48550/arxiv.1811.03402
  • Smith, E. M., Nantes, A., Hogue, A., & Papas, I. (2017). Forecasting Customer Behaviour in Constrained E-Commerce Platforms. https://doi.org/10.1049/cp.2017.0163
  • Smith, E. M., Nantes, A., Hogue, A., & Papas, I. (2017). Forecasting Customer Behaviour in Constrained E-Commerce Platforms. https://doi.org/10.1049/cp.2017.0163
  • Soo, S., & Seo, B.-K. (2019). Cafeteria Use by Students and Effect of Selection Attributes on Satisfaction. In Journal of Asian Finance Economics and Business (Vol. 6, Issue 1, p. 187). Korean Distribution Science Association. https://doi.org/10.13106/jafeb.2019.vol6.no1.187
  • Taylor, S. J., & Letham, B. (2017). Forecasting at Scale. In The American Statistician (Vol. 72, Issue 1, p. 37). Taylor & Francis. https://doi.org/10.-1080/00031305.2017.1380080
  • Vizzoto, F., Testa, F., & Iraldo, F. (2021). Strategies to reduce food waste in the foodservices sector: A systematic review [Review of Strategies to reduce food waste in the foodservices sector: A systematic review]. International Journal of Hospitality Management, 95, 102933. Elsevier BV. https://doi.org/10.1016/j.ijhm.-2021.102933
  • Vollmer, M., Glampson, B., Mellan, T. A., Mishra, S., Mercuri, L., Costello, C., Klaber, R., Cooke, G., Flaxman, S., & Bhatt, S. (2021). A unified machine learning approach to time series forecasting applied to demand at emergency departments. In BMC Emergency Medicine (Vol. 21, Issue 1). BioMed Central. https://doi.org/10.1186/s12873-020-00395-y
  • Weatherford, L., & Kimes, S. E. (2003). A comparison of forecasting methods for hotel revenue management. In International Journal of Forecasting (Vol. 19, Issue 3, p. 401). Elsevier BV. https://doi.org/10.1016/s0169-2070(02)00011-0
  • Wu, H., & Meng, F. (2020). Review on Evaluation Criteria of Machine Learning Based on Big Data. In Journal of Physics Conference Series (Vol. 1486, Issue 5, p. 52026). IOP Publishing. https://doi.org/10.1088/17426596/1486/5/052026
  • Yanchenko, A. K., Deng, D. D., Li, J., Cron, A., & West, M. (2023). Hierarchical dynamic modelling for individualized Bayesian forecasting. In Journal of the Royal Statistical Society Series C (Applied Statistics) (Vol. 72, Issue 1, p. 144). Oxford University Press. https://doi.org/10.1093/jrsssc/qlad002
  • Yanchenko, A. K., Deng, D. D., Li, J., Cron, A., & West, M. (2023). Hierarchical dynamic modelling for individualized Bayesian forecasting. In Journal of the Royal Statistical Society Series C (Applied Statistics) (Vol. 72, Issue 1, p. 144). Oxford University Press. https://doi.org/10.1093/jrsssc/qlad002
  • Yeh, W., Lin, Y., Liang, Y.-C., & Lai, C.-M. (2021). Convolution Neural Network Hyperparameter Optimization Using Simplified Swarm Optimization. In arXiv (Cornell University). Cornell University. https://doi.org/10.48550-/arXiv.2103.
There are 30 citations in total.

Details

Primary Language English
Subjects Software Engineering (Other)
Journal Section Research Articles
Authors

Büşra Aydın 0009-0008-8734-1786

Yavuz Selim Balcıoğlu 0000-0001-7138-2972

Bülent Sezen

Early Pub Date May 28, 2025
Publication Date May 31, 2025
Submission Date March 1, 2025
Acceptance Date May 28, 2025
Published in Issue Year 2025 Volume: 22 Issue: 3

Cite

APA Aydın, B., Balcıoğlu, Y. S., & Sezen, B. (2025). Machine Learning Techniques for Cafeteria Demand Forecasting: An Institutional Case. OPUS Journal of Society Research, 22(3), 532-549. https://doi.org/10.26466/opusjsr.1649256