Electrocatalytic Oxidation of Ethanol and Bioethanol Using Poly(thionine) Supported Platinum Nano/Micro Particles
Year 2024,
, 141 - 153, 30.06.2024
Nuriye Şahin
Mutlu Sönmez Çelebi
Abstract
Pt micro/nano particles were supported on poly(thionine) conducting polymer and used as catalyst for electrochemical oxidation of ethanol. Thionine was polymerized from its aqueous solution by cyclic voltammetry. Incorporation of Pt complex was carried out electrochemically by polycyclic voltammetry using K2PtCl4 as the precursor prior to reduction. Evaluation of optimum experimental parameters was done according to the obtained oxidation currents recorded in ethanol solutions with cyclic voltammetry. For the physical characterization of the Pt/PTH catalyst prepared under optimum conditions, SEM images were recorded. When the cyclic voltammetric behavior of bioethanol with the Pt/PTH catalyst prepared under optimum conditions was examined and compared with synthetic ethanol, it was revealed that the developed catalyst showed high catalytic activity for bioethanol oxidation.
Ethical Statement
There are no ethical issues regarding the publication of this article.
References
- Badwal, S. P. S., Giddey, S., Kulkarni, A., Goel, J., & Basu, S. (2015). Direct ethanol fuel cells for transport and stationary applications–A comprehensive review. Applied Energy, 145, 80-103. https://doi.org/10.1016/j.apenergy.2015.02.002
- Bai, J., Liu, D., Yang, J., &Chen, Y. (2019). Nanocatalysts for electrocatalytic oxidation of ethanol. ChemSusChem, 12(10), 2117-2132. https://doi.org/10.1002/cssc.201803063
- Huang, S. Y., Ganesan, P., & Popov, B. N. (2009). Development of conducting polypyrrole as corrosion-resistant catalyst support for polymer electrolyte membrane fuel cell (PEMFC) application. Applied Catalysis B: Environmental, 93(1-2), 75-81. https://doi.org/10.1016/j.apcatb.2009.09.014
- Kralik, M., & Biffis, A. (2001). Catalysis by metal nanoparticles supported on functional organic polymers. Journal of Molecular Catalysis A: Chemical, 177(1), 113-138. https://doi.org/10.1016/S1381-1169(01)00313-2
- Mohanraju, K., Sreejith, V., Ananth, R., & Cindrella, L. (2015). Enhanced electrocatalytic activity of PANI and CoFe2O4/PANI composite supported on graphene for fuel cell applications. Journal of Power Sources, 284, 383-391. https://doi.org/10.1016/j.jpowsour.2015.03.025
- Saleh, F. S., & Easton E. B. (2013). Determining electrochemically active surface area in PEM fuel cell electrodes with electrochemical impedance spectroscopy and its application to catalyst durability. Electrochimica Acta, 114, 278-284. https://doi.org/10.1016/j.electacta.2013.10.050
- Singh, B. K., & Mahapatra, S. S. (2023). Performance study of palladium modified platinum anode in direct ethanol fuel cells: A green power source. Journal of the Indian Chemical Society, 100(2), 100876. https://doi.org/10.1016/j.jics.2022.100876
- Sönmez Çelebi, M., Pekmez, K., Özyörük, H., & Yıldız, A. (2008). Preparation and physical/electrochemical characterization of Pt/poly (vinylferrocenium) electrocatalyst for methanol oxidation. Journal of power sources, 183(1), 8-13. https://doi.org/10.1016/j.jpowsour.2008.05.010
- Sönmez Çelebi, M. (2016). Energy applications: Fuel cells. A. Tiwari, F. Kuralay, and L. Uzun (Ed.), Advanced electrode materials (397-434) içinde. Wiley-VCH.
- Sönmez Çelebi, M., & Pekmez, K. (2017). Electrooxidation of formic acid using Pt nanoparticles supported on conducting poly vinylferrocene polymer support. Hacettepe Journal of Biology and Chemistry, 45(3), 351-358. https://dergipark.org.tr/en/pub/hjbc/issue/61905/926356
- Sönmez Çelebi, M., Kırlak Kara, S., & Çoşkun Kurt, N. (2020). Electrocatalytic oxidation of formic acid using Pt nanocatalyst supported on PVF-PANI composite. Ordu Üniversitesi Bilim ve Teknoloji Dergisi, 10(1), 1-10. https://dergipark.org.tr/en/pub/ordubtd/issue/55660/755194
- Vigier, F., Coutanceau, C., Perrard, A., Belgsir, E. M., & Lamy, C. (2004). Development of anode catalysts for a direct ethanol fuel cell. Journal of Applied Electrochemistry, 34, 439-446. https://doi.org/10.1023/B:JACH.0000016629.98535.ad
- Zhang, Z., Liu, Q., Pan, D., Xue, Y., Liu, X., Zhao, J., Ouyang, Y., Ding, X., Xiao, S., & Yang, Q. (2023). Formation of a PVP-protected C/UO 2/Pt catalyst in a direct ethanol fuel cell. RSC advances, 13(23), 15910-15917. https://doi.org/10.1039/D3RA01017A
- Singh, B. K., & Mahapatra, S. S. (2023). Performance study of palladium modified platinum anode in direct ethanol fuel cells: A green power source. Journal of the Indian Chemical Society, 100(2), 100876. https://doi.org/10.1039/D3RA01017A
- Zhou, W., Zhou, Z., Song, S., Li, W., Sun, G., Tsiakaras, P., & Xin, Q. (2003). Pt based anode catalysts for direct ethanol fuel cells. Applied Catalysis B: Environmental, 46(2), 273-285. https://doi.org/10.1016/S0926-3373(03)00218-2
Poli(tiyonin) Destekli Platin Nano/Mikro Partikülleri Kullanılarak Etanolün ve Biyoetanolün Elektrokatalitik Yükseltgenmesi
Year 2024,
, 141 - 153, 30.06.2024
Nuriye Şahin
Mutlu Sönmez Çelebi
Abstract
Pt mikro/nano parçacıkları poli(tiyonin) iletken polimer destek malzemesi üzerinde sentezlenmiş ve etanolün elektrokimyasal yükseltgenmesi için kullanılmıştır. Tiyonin, sulu çözeltiden dönüşümlü voltametri ile polimerleştirildi. Pt kompleksinin polimer film yapısına immobilize edilmesi, sulu K2PtCl4 çözeltisinden dönüşümlü voltametrik taramalar ve ardından kimyasal veya elektrokimyasal indirgeme yoluyla gerçekleştirildi. Deneysel parametreler, etanol çözeltisinde kaydedilen pik akımı değerlerine göre optimize edildi. Optimum şartlarda hazırlanan Pt/PTH katalizörünün fiziksel karakterizasyonu için SEM görüntüleri kaydedildi. Optimum şartlarda hazırlanan Pt/PTH katalizörü ile biyoetanolün dönüşümlü voltametrik davranışı incelenip sentetik etanol ile karşılaştırıldığında geliştirilen katalizörün biyoetanol yükseltgenmesi için yüksek katalitik aktivite gösterdiği ortaya çıktı.
References
- Badwal, S. P. S., Giddey, S., Kulkarni, A., Goel, J., & Basu, S. (2015). Direct ethanol fuel cells for transport and stationary applications–A comprehensive review. Applied Energy, 145, 80-103. https://doi.org/10.1016/j.apenergy.2015.02.002
- Bai, J., Liu, D., Yang, J., &Chen, Y. (2019). Nanocatalysts for electrocatalytic oxidation of ethanol. ChemSusChem, 12(10), 2117-2132. https://doi.org/10.1002/cssc.201803063
- Huang, S. Y., Ganesan, P., & Popov, B. N. (2009). Development of conducting polypyrrole as corrosion-resistant catalyst support for polymer electrolyte membrane fuel cell (PEMFC) application. Applied Catalysis B: Environmental, 93(1-2), 75-81. https://doi.org/10.1016/j.apcatb.2009.09.014
- Kralik, M., & Biffis, A. (2001). Catalysis by metal nanoparticles supported on functional organic polymers. Journal of Molecular Catalysis A: Chemical, 177(1), 113-138. https://doi.org/10.1016/S1381-1169(01)00313-2
- Mohanraju, K., Sreejith, V., Ananth, R., & Cindrella, L. (2015). Enhanced electrocatalytic activity of PANI and CoFe2O4/PANI composite supported on graphene for fuel cell applications. Journal of Power Sources, 284, 383-391. https://doi.org/10.1016/j.jpowsour.2015.03.025
- Saleh, F. S., & Easton E. B. (2013). Determining electrochemically active surface area in PEM fuel cell electrodes with electrochemical impedance spectroscopy and its application to catalyst durability. Electrochimica Acta, 114, 278-284. https://doi.org/10.1016/j.electacta.2013.10.050
- Singh, B. K., & Mahapatra, S. S. (2023). Performance study of palladium modified platinum anode in direct ethanol fuel cells: A green power source. Journal of the Indian Chemical Society, 100(2), 100876. https://doi.org/10.1016/j.jics.2022.100876
- Sönmez Çelebi, M., Pekmez, K., Özyörük, H., & Yıldız, A. (2008). Preparation and physical/electrochemical characterization of Pt/poly (vinylferrocenium) electrocatalyst for methanol oxidation. Journal of power sources, 183(1), 8-13. https://doi.org/10.1016/j.jpowsour.2008.05.010
- Sönmez Çelebi, M. (2016). Energy applications: Fuel cells. A. Tiwari, F. Kuralay, and L. Uzun (Ed.), Advanced electrode materials (397-434) içinde. Wiley-VCH.
- Sönmez Çelebi, M., & Pekmez, K. (2017). Electrooxidation of formic acid using Pt nanoparticles supported on conducting poly vinylferrocene polymer support. Hacettepe Journal of Biology and Chemistry, 45(3), 351-358. https://dergipark.org.tr/en/pub/hjbc/issue/61905/926356
- Sönmez Çelebi, M., Kırlak Kara, S., & Çoşkun Kurt, N. (2020). Electrocatalytic oxidation of formic acid using Pt nanocatalyst supported on PVF-PANI composite. Ordu Üniversitesi Bilim ve Teknoloji Dergisi, 10(1), 1-10. https://dergipark.org.tr/en/pub/ordubtd/issue/55660/755194
- Vigier, F., Coutanceau, C., Perrard, A., Belgsir, E. M., & Lamy, C. (2004). Development of anode catalysts for a direct ethanol fuel cell. Journal of Applied Electrochemistry, 34, 439-446. https://doi.org/10.1023/B:JACH.0000016629.98535.ad
- Zhang, Z., Liu, Q., Pan, D., Xue, Y., Liu, X., Zhao, J., Ouyang, Y., Ding, X., Xiao, S., & Yang, Q. (2023). Formation of a PVP-protected C/UO 2/Pt catalyst in a direct ethanol fuel cell. RSC advances, 13(23), 15910-15917. https://doi.org/10.1039/D3RA01017A
- Singh, B. K., & Mahapatra, S. S. (2023). Performance study of palladium modified platinum anode in direct ethanol fuel cells: A green power source. Journal of the Indian Chemical Society, 100(2), 100876. https://doi.org/10.1039/D3RA01017A
- Zhou, W., Zhou, Z., Song, S., Li, W., Sun, G., Tsiakaras, P., & Xin, Q. (2003). Pt based anode catalysts for direct ethanol fuel cells. Applied Catalysis B: Environmental, 46(2), 273-285. https://doi.org/10.1016/S0926-3373(03)00218-2