Research Article
BibTex RIS Cite

Investigation of Heat Transfer Effects in Unconfined and Confined Swirling Jets Impinging on a Flat Plate

Year 2023, Volume: 13 Issue: 2, 261 - 285, 31.12.2023
https://doi.org/10.54370/ordubtd.1326751

Abstract

In this study, the heat transfer effects on the impingement surfaces of unconfined and confined turbulent swirl air jets impacting a flat surface are experimentally investigated. For Reynolds numbers Re = 20000 and 30000, nozzle-to-plate spacings H/D = 0.5, 1, 3 and 6 and dimensionless swirl number S = 0.125, 0.26 and 0.52, temperature measurements were performed with a thermal camera on the impingement plate surfaces. From the temperature distributions obtained, the effects of Reynolds number, nozzle-to-plate spacing, the presence of confinement plate and dimensionless swirl number on the Nusselt distributions on the impingement plate were investigated. In all flow fields investigated, it was observed that the Nusselt values on the impingement plate increased with increasing Reynolds number and decreased with increasing nozzle-to-plate spacing. The presence of the confinement plate in the flow fields reduces the Nusselt values on the impingement plate. As the dimensionless swirl number increases, the Nusselt distributions on the impingement plate become more uniform. The Nusselt distribution on the impingement plate is closest to the uniform distribution at H/D=3 and S=0.52.

References

  • Gupta, A. K., Lilley, D. G. ve Syred, N. (1984). Swirl flows. Abacus Press.
  • Amini, Y., Mokhtari, M., Haghshenasfard, M. ve Barzegar Gerdroodbary, M. (2015). Heat transfer of swirling impinging jets ejected from Nozzles with twisted tapes utilizing CFD technique. Case Studies in Thermal Engineering, 6, 104-115. https://doi.org/https://doi.org/10.1016/j.csite.2015.08.001
  • Bergman, T. L., Lavine, A. S., Incropera, F. P. ve Dewitt, D. P. (2011). Introduction to heat transfer (Sixth Edition). Wiley.
  • Bilen, K., Bakirci, K., Yapici, S. ve Yavuz, T. (2002). Heat transfer from a plate impinging swirl jet. International Journal of Energy Research, 26(4), 305-320. https://doi.org/https://doi.org/10.1002/er.785
  • Churchill, S. W. ve Chu, H. H. S. (1975). Correlating equations for laminar and turbulent free convection from a vertical plate. International journal of heat and mass transfer, 18(11), 1323-1329. https://doi.org/10.1016/0017-9310(75)90243-4
  • Huang, L. (1996). Heat transfer and flow visualization of conventional and swirling impinging jets [Doktora tezi]. The University of New Mexico.
  • Huang, L. ve El-Genk, M. S. (1998). Heat transfer and flow visualization experiments of swirling, multi-channel, and conventional impinging jets. International Journal of Heat and Mass Transfer, 41(3), 583400. https://doi.org/10.1016/S0017-9310(97)00123-3
  • Ianiro, A. ve Cardone, G. (2012). Heat transfer rate and uniformity in multichannel swirling impinging jets. Applied Thermal Engineering, 49, 89-98. https://doi.org/10.1016/j.applthermaleng.2011.10.018
  • Lee, D. H., Won, S. Y., Kim, Y.-T. ve Chung, Y. S. (2002). Turbulent heat transfer from a flat surface to a swirling round impinging jet. International Journal of Heat and Mass Transfer, 45, 223-227. https://doi.org/10.1016/S0017-9310(01)00135-1
  • Mohamed Illyas, S., Ramesh Bapu, B. R. ve Venkata Subba Rao, V. (2019). Experimental analysis of heat transfer and multi objective optimization of swirling jet impingement on a flat surface. Journal of Applied Fluid Mechanics, 12(3), 803-817. https://doi.org/10.29252/jafm.12.03.29172
  • Senda, M., Inaoka, K., Toyoda, D. ve Sato, S. (2005). Heat transfer and fluid flow characteristics in a swirling impinging jet. Heat Transfer—Asian Research, 34(5), 324-335. https://doi.org/10.1002/htj.20068
  • Singh, P. ve Chander, S. (2019). Study of flow field and heat transfer characteristics for an interacting pair of counter-rotating dual-swirling impinging flames. International Journal of Thermal Sciences, 144, 191-211. https://doi.org/10.1016/j.ijthermalsci.2019.06.005
  • Wannassi, M. ve Monnoyer, F. (2015). Fluid flow and convective heat transfer of combined swirling and straight impinging jet arrays. Applied Thermal Engineering, 78, 62-73. https://doi.org/10.1016/j.applthermaleng.2014.12.043
  • Wen, M.-Y. ve Jang, K.-J. (2003). An impingement cooling on a flat surface by using circular jet with longitudinal swirling strips. International Journal of Heat and Mass Transfer, 46(24), 4657-4667. https://doi.org/10.1016/S0017-9310(03)00302-8
  • Wongcharee, K., Chuwattanakul, V. ve Eiamsa-ard, S. (2017). Heat transfer of swirling impinging jets with TiO2-water nanofluids. Chemical Engineering and Processing - Process Intensification, 114, 16-23. https://doi.org/10.1016/j.cep.2017.01.004
  • Zerrout, A., Khelil, A. ve Loukarfi, L. (2017). Experimental and numerical investigation of impinging multi-jet system. Mechanics, 23(2), 228-235. https://doi.org/10.5755/J01.MECH.23.2.13900

Düz Bir Levhaya Çarpan Sınırlandırılmamış ve Sınırlandırılmış Dönmeli Jetlerde Isı Transferi Etkilerinin İncelenmesi

Year 2023, Volume: 13 Issue: 2, 261 - 285, 31.12.2023
https://doi.org/10.54370/ordubtd.1326751

Abstract

Bu çalışmada, düz bir yüzeye çarpan sınırlandırılmamış ve düz levha ile sınırlandırılmış türbülanslı dönmeli hava jetlerinde çarpma yüzeylerindeki ısı transferi etkileri deneysel olarak incelenmiştir. Reynolds sayısının Re = 20000 ve 30000 değerleri, lüle-levha arası açıklığın H/D = 0.5, 1, 3 ve 6 değerleri ve boyutsuz dönme sayısının S= 0.125, 0.26 ve 0.52 değerleri için çarpma levhası yüzeylerinde termal kamera ile sıcaklık ölçümleri gerçekleştirilmiştir. Elde edilen sıcaklık dağılımlarından, Reynolds sayısının, lüle-levha arası açıklığın, sınırlayıcı levha durumunun ve boyutsuz dönme sayısının çarpma levhası üzerindeki Nusselt dağılımlarına etkisi araştırılmıştır. İncelenen tüm akış alanlarında, çarpma levhası üzerindeki Nusselt değerlerinin artan Reynolds sayısı ile arttığı, artan lüle-levha arası açıklık ile azaldığı görülmüştür. Akış alanlarında sınırlayıcı levhanın varlığı, çarpma levhası üzerindeki Nusselt değerlerini azaltmaktadır. Boyutsuz dönme sayısı arttıkça, çarpma levhası üzerindeki Nusselt dağılımları daha üniform hale gelmektedir. Çarpma levhası üzerinde üniform dağılıma en yakın Nusselt dağılımı görüntüsü, H/D=3 ve S=0.52 değerlerinde oluşmaktadır.

References

  • Gupta, A. K., Lilley, D. G. ve Syred, N. (1984). Swirl flows. Abacus Press.
  • Amini, Y., Mokhtari, M., Haghshenasfard, M. ve Barzegar Gerdroodbary, M. (2015). Heat transfer of swirling impinging jets ejected from Nozzles with twisted tapes utilizing CFD technique. Case Studies in Thermal Engineering, 6, 104-115. https://doi.org/https://doi.org/10.1016/j.csite.2015.08.001
  • Bergman, T. L., Lavine, A. S., Incropera, F. P. ve Dewitt, D. P. (2011). Introduction to heat transfer (Sixth Edition). Wiley.
  • Bilen, K., Bakirci, K., Yapici, S. ve Yavuz, T. (2002). Heat transfer from a plate impinging swirl jet. International Journal of Energy Research, 26(4), 305-320. https://doi.org/https://doi.org/10.1002/er.785
  • Churchill, S. W. ve Chu, H. H. S. (1975). Correlating equations for laminar and turbulent free convection from a vertical plate. International journal of heat and mass transfer, 18(11), 1323-1329. https://doi.org/10.1016/0017-9310(75)90243-4
  • Huang, L. (1996). Heat transfer and flow visualization of conventional and swirling impinging jets [Doktora tezi]. The University of New Mexico.
  • Huang, L. ve El-Genk, M. S. (1998). Heat transfer and flow visualization experiments of swirling, multi-channel, and conventional impinging jets. International Journal of Heat and Mass Transfer, 41(3), 583400. https://doi.org/10.1016/S0017-9310(97)00123-3
  • Ianiro, A. ve Cardone, G. (2012). Heat transfer rate and uniformity in multichannel swirling impinging jets. Applied Thermal Engineering, 49, 89-98. https://doi.org/10.1016/j.applthermaleng.2011.10.018
  • Lee, D. H., Won, S. Y., Kim, Y.-T. ve Chung, Y. S. (2002). Turbulent heat transfer from a flat surface to a swirling round impinging jet. International Journal of Heat and Mass Transfer, 45, 223-227. https://doi.org/10.1016/S0017-9310(01)00135-1
  • Mohamed Illyas, S., Ramesh Bapu, B. R. ve Venkata Subba Rao, V. (2019). Experimental analysis of heat transfer and multi objective optimization of swirling jet impingement on a flat surface. Journal of Applied Fluid Mechanics, 12(3), 803-817. https://doi.org/10.29252/jafm.12.03.29172
  • Senda, M., Inaoka, K., Toyoda, D. ve Sato, S. (2005). Heat transfer and fluid flow characteristics in a swirling impinging jet. Heat Transfer—Asian Research, 34(5), 324-335. https://doi.org/10.1002/htj.20068
  • Singh, P. ve Chander, S. (2019). Study of flow field and heat transfer characteristics for an interacting pair of counter-rotating dual-swirling impinging flames. International Journal of Thermal Sciences, 144, 191-211. https://doi.org/10.1016/j.ijthermalsci.2019.06.005
  • Wannassi, M. ve Monnoyer, F. (2015). Fluid flow and convective heat transfer of combined swirling and straight impinging jet arrays. Applied Thermal Engineering, 78, 62-73. https://doi.org/10.1016/j.applthermaleng.2014.12.043
  • Wen, M.-Y. ve Jang, K.-J. (2003). An impingement cooling on a flat surface by using circular jet with longitudinal swirling strips. International Journal of Heat and Mass Transfer, 46(24), 4657-4667. https://doi.org/10.1016/S0017-9310(03)00302-8
  • Wongcharee, K., Chuwattanakul, V. ve Eiamsa-ard, S. (2017). Heat transfer of swirling impinging jets with TiO2-water nanofluids. Chemical Engineering and Processing - Process Intensification, 114, 16-23. https://doi.org/10.1016/j.cep.2017.01.004
  • Zerrout, A., Khelil, A. ve Loukarfi, L. (2017). Experimental and numerical investigation of impinging multi-jet system. Mechanics, 23(2), 228-235. https://doi.org/10.5755/J01.MECH.23.2.13900
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering (Other)
Journal Section Research Articles
Authors

Haluk Keleş 0000-0002-6562-8902

Yücel Özmen 0000-0003-1127-1060

Early Pub Date December 29, 2023
Publication Date December 31, 2023
Submission Date July 13, 2023
Published in Issue Year 2023 Volume: 13 Issue: 2

Cite

APA Keleş, H., & Özmen, Y. (2023). Düz Bir Levhaya Çarpan Sınırlandırılmamış ve Sınırlandırılmış Dönmeli Jetlerde Isı Transferi Etkilerinin İncelenmesi. Ordu Üniversitesi Bilim Ve Teknoloji Dergisi, 13(2), 261-285. https://doi.org/10.54370/ordubtd.1326751