Treatment of Industrial Wastewaters by Sequential Electrochemical, Chemical and Photochemical Methods Using Agricultural Waste Derived Graphene-like Materials
Year 2023,
Volume: 13 Issue: 2, 234 - 248, 31.12.2023
Burcu Palas
,
Gülin Ersöz
,
Süheyda Atalay
Abstract
The quality of the in-situ pretreated real textile wastewater was improved by a hybrid treatment process comprising of the sequential applications of the electrocoagulation, adsorption and photo Fenton like oxidation processes. Under the most suitable electrocoagulation conditions 19.5% total organic carbon (TOC) removal was accomplished. The textile wastewater was subjected to adsorption after electrocoagulation. Graphene oxide adsorbents were prepared from corncob (C-GO) was used as the adsorbent in the adsorption process. The effect of the adsorbent loading and the initial pH were investigated to determine the most suitable adsorption conditions. At 2 g/L of adsorbent loading and pH 5, 40.3% cumulative TOC removal was achieved. After the adsorption photo Fenton like oxidation was applied as the third treatment step in the presence of BiFeO3/C-GO and BiNiO3/C-GO catalysts. The TOC removal performances of the catalysts were compared at 0.25 and 0.5 g/L of catalyst loading. After the photo Fenton like oxidation the highest cumulative TOC removal was evaluated as 51% in the presence of BiNiO3/C-GO catalysts. The use of biomass-derived graphene oxide as adsorbent and catalyst support material for textile wastewater removal in a sequential treatment system consisting of electrocoagulation, adsorption and photo-Fenton-like oxidation constitutes the main originality of this study.
Project Number
315M537-ERANETMED–SETPROPER Project
References
- Akhavan, O., Bijanzad, K. ve Mirsepah, A. (2014). Synthesis of graphene from natural and industrial carbonaceous wastes. RSC Advances, 4(39), 20441–20448. https://doi.org/10.1039/c4ra01550a
- Ariyanti, D., Lesdantina, D., Budiyono ve Satriadi, H. (2021). Synthesis and characterization of graphene-like material derived from sugarcane bagasse. IOP Conference Series: Materials Science and Engineering, 1053(1), 012013. https://doi.org/10.1088/1757-899x/1053/1/012013
- Athanasiou, M., Yannopoulos, S. N. ve Ioannides, T. (2022). Biomass-derived graphene-like materials as active electrodes for supercapacitor applications: A critical review. Chemical Engineering Journal, 446, 137191. https://doi.org/10.1016/j.cej.2022.137191
- Bener, S., Bulca, Ö., Palas, B., Tekin, G., Atalay, S. ve Ersöz, G. (2019). Electrocoagulation process for the treatment of real textile wastewater: Effect of operative conditions on the organic carbon removal and kinetic study. Process Safety and Environmental Protection, 129, 47–54. https://doi.org/10.1016/j.psep.2019.06.010
- Berktas, I., Hezarkhani, M., Haghighi Poudeh, L. ve Saner Okan, B. (2020). Recent developments in the synthesis of graphene and graphene-like structures from waste sources by recycling and upcycling technologies: a review. Graphene Technology, 5(3–4), 59–73. https://doi.org/10.1007/s41127-020-00033-1
- Bisschops, I. ve Spanjers, H. (2003). Literature review on textile wastewater characterisation. Environmental Technology, 24(11), 1399–1411. https://doi.org/10.1080/09593330309385684
- Bukhari, A., Ijaz, I., Zain, H., Mehmood, U., Mudassir Iqbal, M., Gilani, E. ve Nazir, A. (2023). Introduction of CdO nanoparticles into graphene and graphene oxide nanosheets for increasing adsorption capacity of Cr from wastewater collected from petroleum refinery. Arabian Journal of Chemistry, 16(2), 104445. https://doi.org/10.1016/j.arabjc.2022.104445
- Chailuecha, C., Klinbumrung, A., Chaopanich, P. ve Sirirak, R. (2021). Graphene-like porous carbon nanostructure from corn husk: Synthesis and characterization. Materials Today: Proceedings, 47, 3525–3528. https://doi.org/10.1016/j.matpr.2021.03.512
- de Assis, L. K., Damasceno, B. S., Carvalho, M. N., Oliveira, E. H. C. ve Ghislandi, M. G. (2020). Adsorption capacity comparison between graphene oxide and graphene nanoplatelets for the removal of coloured textile dyes from wastewater. Environmental Technology, 41(18), 2360–2371. https://doi.org/10.1080/09593330.2019.1567603
- Emamjomeh, M. M. ve Sivakumar, M. (2009). Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes. Journal of Environmental Management, 90(5), 1663–1679. https://doi.org/10.1016/j.jenvman.2008.12.011
- Eyvaz, M., Bayramoğlu, M. ve Kobya, M. (2006). Tekstil endüstrisi atıksularının elektrokoagülasyon ile arıtılması: Teknik ve ekonomik değerlendirme. Su Kirlenmesi Kontrolü Dergisi, 16(1–3), 55–65. https://dergipark.org.tr/en/pub/skatmk/issue/65265/1004375
- Fan, X., Zhang, G. ve Zhang, F. (2015). Multiple roles of graphene in heterogeneous catalysis. Chemical Society Reviews, 44(10), 3023–3035. https://doi.org/10.1039/C5CS00094G
- Foo, K. Y. ve Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2–10. https://doi.org/10.1016/j.cej.2009.09.013
- GilPavas, E., Dobrosz-Gómez, I. ve Gómez-García, M. Á. (2017). Coagulation-flocculation sequential with Fenton or Photo-Fenton processes as an alternative for the industrial textile wastewater treatment. Journal of Environmental Management, 191, 189–197. https://doi.org/10.1016/j.jenvman.2017.01.015
- Guo, X., Qu, L., Tian, M., Zhu, S., Zhang, X., Tang, X. ve Sun, K. (2016). Chitosan/Graphene Oxide Composite as an Effective Adsorbent for Reactive Red Dye Removal. Water Environment Research, 88(7), 579–588. https://doi.org/10.2175/106143016X14609975746325
- Han, L., Zhang, P., Li, L., Lu, S., Su, B., An, X. ve Lei, Z. (2021). Nitrogen-containing carbon nano-onions-like and graphene-like materials derived from biomass and the adsorption and visible photocatalytic performance. Applied Surface Science, 543, 148752. https://doi.org/10.1016/j.apsusc.2020.148752
- Huang, B., Xia, M., Qiu, J. ve Xie, Z. (2019). Biomass Derived Graphene‐Like Carbons for Electrocatalytic Oxygen Reduction Reaction. ChemNanoMat, 5(5), 682–689. https://doi.org/10.1002/cnma.201900009
- Kavitha, D. ve Namasivayam, C. (2008). Capacity of activated carbon in the removal of acid brilliant blue: Determination of equilibrium and kinetic model parameters. Chemical Engineering Journal, 139(3), 453–461. https://doi.org/10.1016/j.cej.2007.08.011
- Khandegar, V. ve Saroha, A. K. (2013). Electrocoagulation for the treatment of textile industry effluent–A review. Journal of Environmental Management, 128, 949–963. https://doi.org/10.1016/j.jenvman.2013.06.043
- Kutluay, S. (2019). Benzen uçucu organik bileşiğinin badem kabuğundan üretilen char üzerine gaz fazı adsorpsiyonu: Kinetik, denge ve termodinamik. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 8(4), 1432–1445. https://doi.org/10.17798/bitlisfen.543583
- Lee, Y. N., Lago, R. M., Fierro, J. L. G. ve González, J. (2001). Hydrogen peroxide decomposition over Ln1−xAxMnO3 (Ln = La or Nd and A = K or Sr) perovskites. Applied Catalysis A: General, 215(1–2), 245–256. https://doi.org/10.1016/S0926-860X(01)00536-1
- Li, Y., Sun, J., Du, Q., Zhang, L., Yang, X., Wu, S., Xia, Y., Wang, Z., Xia, L. ve Cao, A. (2014). Mechanical and dye adsorption properties of graphene oxide/chitosan composite fibers prepared by wet spinning. Carbohydrate Polymers, 102, 755–761. https://doi.org/10.1016/j.carbpol.2013.10.094
- Liu, X., Sun, J., Duan, S., Wang, Y., Hayat, T., Alsaedi, A., Wang, C. ve Li, J. (2017). A Valuable Biochar from Poplar Catkins with High Adsorption Capacity for Both Organic Pollutants and Inorganic Heavy Metal Ions. Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598-017-09446-0
- Luo, H., Yu, S., Zhong, M., Han, Y., Su, B. ve Lei, Z. (2022). Waste biomass-assisted synthesis of TiO2 and N/O-contained graphene-like biochar composites for enhanced adsorptive and photocatalytic performances. Journal of Alloys and Compounds, 899, 163287. https://doi.org/10.1016/j.jallcom.2021.163287
- Manenti, D. R., Módenes, A. N., Soares, P. A., Espinoza-Quiñones, F. R., Boaventura, R. A. R., Bergamasco, R. ve Vilar, V. J. P. (2014). Assessment of a multistage system based on electrocoagulation, solar photo-Fenton and biological oxidation processes for real textile wastewater treatment. Chemical Engineering Journal, 252, 120–130. https://doi.org/10.1016/j.cej.2014.04.096
- Moitra, D., Dhole, S., Ghosh, B. K., Chandel, M., Jani, R. K., Patra, M. K., Vadera, S. R. ve Ghosh, N. N. (2017). Synthesis and Microwave Absorption Properties of BiFeO3 Nanowire-RGO Nanocomposite and First-Principles Calculations for Insight of Electromagnetic Properties and Electronic Structures. The Journal of Physical Chemistry C, 121(39), 21290–21304. https://doi.org/10.1021/acs.jpcc.7b02836
- Moussa, D. T., El-Naas, M. H., Nasser, M. ve Al-Marri, M. J. (2017). A comprehensive review of electrocoagulation for water treatment: Potentials and challenges. Journal of Environmental Management, 186, 24–41. https://doi.org/10.1016/j.jenvman.2016.10.032
- Naje, A. S., Chelliapan, S., Zakaria, Z. ve Abbas, S. A. (2015). Treatment performance of textile wastewater using electrocoagulation (EC) process under combined electrical connection of electrodes. International Journal of Electrochemical Science, 10(7), 5924–5941. http://www.electrochemsci.org/papers/vol10/100705924.pdf
- Ozyonar, F. ve Karagozoglu, B. (2012). Systematic assessment of electrocoagulation for the treatment of marble processing wastewater. International Journal of Environmental Science and Technology, 9(4), 637–646. https://doi.org/10.1007/s13762-012-0093-z
- Pastrana-Martínez, L. M., Morales-Torres, S., Likodimos, V., Figueiredo, J. L., Faria, J. L., Falaras, P. ve Silva, A. M. T. (2012). Advanced nanostructured photocatalysts based on reduced graphene oxide–TiO2 composites for degradation of diphenhydramine pharmaceutical and methyl orange dye. Applied Catalysis B: Environmental, 123–124, 241–256. https://doi.org/10.1016/j.apcatb.2012.04.045
- Patel, H. ve Vashi, R. T. (2010). Treatment of textile wastewaterby adsorption and coagulation. Journal of Chemistry, 7(4), 1468–1476. https://doi.org/10.1155/2010/987620
- Peng, W., Li, H., Liu, Y. ve Song, S. (2016). Adsorption of methylene blue on graphene oxide prepared from amorphous graphite: Effects of pH and foreign ions. Journal of Molecular Liquids, 221, 82–87. https://doi.org/10.1016/j.molliq.2016.05.074
- Pera-Titus, M., Garcı́a-Molina, V., Baños, M. A., Giménez, J. ve Esplugas, S. (2004). Degradation of chlorophenols by means of advanced oxidation processes: a general review. Applied Catalysis B: Environmental, 47(4), 219–256. https://doi.org/10.1016/j.apcatb.2003.09.010
- Preetha, R., Govinda raj, M., Vijayakumar, E., Narendran, M. G., Varathan, E., Neppolian, B., Jeyapaul, U. ve John Bosco, A. (2022). Promoting photocatalytic interaction of boron doped reduced graphene oxide supported BiFeO3 nanocomposite for visible-light-induced organic pollutant degradation. Journal of Alloys and Compounds, 904, 164038. https://doi.org/10.1016/j.jallcom.2022.164038
- Rajaura, R. S., Srivastava, S., Sharma, V., Sharma, P. K., Lal, C., Singh, M., Palsania, H. S. ve Vijay, Y. K. (2016). Role of interlayer spacing and functional group on the hydrogen storage properties of graphene oxide and reduced graphene oxide. International Journal of Hydrogen Energy, 41(22), 9454–9461. https://doi.org/10.1016/j.ijhydene.2016.04.115
- Rivera‐Utrilla, J., Bautista‐Toledo, I., Ferro‐García, M. A. ve Moreno‐Castilla, C. (2001). Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption. Journal of Chemical Technology & Biotechnology, 76(12), 1209–1215. https://doi.org/10.1002/jctb.506
- Sanei, A., Dashtian, K., Yousefi Seyf, J., Seidi, F. ve Kolvari, E. (2023). Biomass derived reduced-graphene-oxide supported α-Fe2O3/ZnO S-scheme heterostructure: Robust photocatalytic wastewater remediation. Journal of Environmental Management, 332, 117377. https://doi.org/10.1016/j.jenvman.2023.117377
- Sarwar, Z., Tichonovas, M., Krugly, E., Masione, G., Abromaitis, V. ve Martuzevicius, D. (2021). Graphene oxide loaded fibrous matrixes of polyether block amide (PEBA) elastomer as an adsorbent for removal of cationic dye from wastewater. Journal of Environmental Management, 298, 113466. https://doi.org/10.1016/j.jenvman.2021.113466
- Sawant, S. A., Patil, A. V., Waikar, M. R., Rasal, A. S., Dhas, S. D., Moholkar, A. V., Vhatkar, R. S. ve Sonkawade, R. G. (2022). Advances in chemical and biomass-derived graphene/graphene-like nanomaterials for supercapacitors. Journal of Energy Storage, 51, 104445. https://doi.org/10.1016/j.est.2022.104445
- Shalini Reghunath, B., Rajasekaran, S., Devi K R, S., Saravanakumar, B., William, J. J., Pinheiro, D., Govindarajan, D. ve Kheawhom, S. (2022). Fabrication of bismuth ferrite/graphitic carbon nitride/N-doped graphene quantum dots composite for high performance supercapacitors. Journal of Physics and Chemistry of Solids, 171, 110985. https://doi.org/10.1016/j.jpcs.2022.110985
- Shi, Y., Song, G., Li, A., Wang, J., Wang, H., Sun, Y. ve Ding, G. (2022). Graphene oxide-chitosan composite aerogel for adsorption of methyl orange and methylene blue: Effect of pH in single and binary systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 641, 128595. https://doi.org/10.1016/j.colsurfa.2022.128595
- Sitko, R., Turek, E., Zawisza, B., Malicka, E., Talik, E., Heimann, J., Gagor, A., Feist, B. ve Wrzalik, R. (2013). Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Transactions, 42(16), 5682. https://doi.org/10.1039/c3dt33097d
- Surekha, G., Krishnaiah, K. V., Ravi, N. ve Padma Suvarna, R. (2020). FTIR, Raman and XRD analysis of graphene oxide films prepared by modified Hummers method. Journal of Physics: Conference Series, 1495(1), 012012. https://doi.org/10.1088/1742-6596/1495/1/012012
- Vilar, V. J. P., Pinho, L. X., Pintor, A. M. A. ve Boaventura, R. A. R. (2011). Treatment of textile wastewaters by solar-driven advanced oxidation processes. Solar Energy, 85(9), 1927–1934. https://doi.org/10.1016/j.solener.2011.04.033
- Wang, J., Salihi, E. C. ve Šiller, L. (2017). Green reduction of graphene oxide using alanine. Materials Science and Engineering: C, 72, 1–6. https://doi.org/10.1016/j.msec.2016.11.017
- Wang, S. ve Peng, Y. (2010). Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal, 156(1), 11–24. https://doi.org/10.1016/j.cej.2009.10.029
- Xiao, J., Xie, Y. ve Cao, H. (2015). Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation. Chemosphere, 121, 1–17. https://doi.org/10.1016/j.chemosphere.2014.10.072
- Xiao, X., Chen, B., Zhu, L. ve Schnoor, J. L. (2017). Sugar Cane-Converted Graphene-like Material for the Superhigh Adsorption of Organic Pollutants from Water via Coassembly Mechanisms. Environmental Science & Technology, 51(21), 12644–12652. https://doi.org/10.1021/acs.est.7b03639
- Zhao, G., Li, J., Ren, X., Chen, C. ve Wang, X. (2011). Few-Layered Graphene Oxide Nanosheets As Superior Sorbents for Heavy Metal Ion Pollution Management. Environmental Science & Technology, 45(24), 10454–10462. https://doi.org/10.1021/es203439v
- Zhao, G., Ren, X., Gao, X., Tan, X., Li, J., Chen, C., Huang, Y. ve Wang, X. (2011). Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Transactions, 40(41), 10945. https://doi.org/10.1039/c1dt11005e
- Zhao, Z., Zhou, W., Lin, D., Zhu, L., Xing, B. ve Liu, Z. (2022). Construction of dual active sites on diatomic metal (FeCo−N/C-x) catalysts for enhanced Fenton-like catalysis. Applied Catalysis B: Environmental, 309, 121256. https://doi.org/10.1016/j.apcatb.2022.121256
- Zhou, Y., He, J., Chen, R. ve Li, X. (2022). Recent advances in biomass-derived graphene and carbon nanotubes. Materials Today Sustainability, 18, 100138. https://doi.org/10.1016/j.mtsust.2022.100138
Endüstriyel Atık Suların Zirai Atıktan Türetilmiş Grafen Benzeri Malzemeler Kullanılarak Ardışık Elektrokimyasal, Kimyasal ve Fotokimyasal Yöntemlerle Arıtılması
Year 2023,
Volume: 13 Issue: 2, 234 - 248, 31.12.2023
Burcu Palas
,
Gülin Ersöz
,
Süheyda Atalay
Abstract
Yerinde ön-işlem görmüş gerçek tekstil atık suyu, elektrokoagülasyon, adsorpsiyon ve foto Fenton benzeri oksidasyon işlemlerinin ardışık uygulamalarından oluşan bir hibrid proses ile arıtılmıştır. Elektrokoagülasyon prosesinde alüminyum elektrot kullanılarak en uygun reaksiyon koşulları altında %19,5 toplam organik karbon (TOK) giderimi sağlanmıştır. Tekstil atık suyu elektrokoagülasyondan sonra adsorpsiyona tabi tutulmuştur. Adsorpsiyon işleminde mısır koçanından hazırlanan grafen oksit (MK-GO) adsorbentler kullanılmıştır. En uygun adsorpsiyon koşullarının belirlenmesi için adsorbent yüklemesinin ve başlangıç pH'sının etkisi incelenmiştir. 2 g/L adsorbent yüklemesinde ve pH 5'de %40,3 kümülatif TOK giderimi sağlanmıştır. Adsorpsiyon sonrasında üçüncü adım olarak BiFeO3/MK-GO ve BiNiO3/MK-GO katalizörler varlığında foto Fenton benzeri oksidasyonu uygulanmıştır. Katalizörlerin TOK giderimi performansları 0,25 ve 0,5 g/L’de karşılaştırılmış ve foto Fenton benzeri oksidasyonu sonrasında en yüksek kümülatif TOK giderimi BiNiO3/MK-GO varlığında %51 olarak hesaplanmıştır. Biyokütleden türetilen grafen oksitin elektrokoagülasyon, adsorpsiyon ve foto Fenton benzeri oksidasyonundan oluşan bir ardışık arıtım sisteminde tekstil atık suyu giderimi için adsorbent ve katalizör destek malzemesi olarak kullanımı bu çalışmanın temel özgün değerini oluşturmaktadır.
Supporting Institution
TÜBİTAK
Project Number
315M537-ERANETMED–SETPROPER Project
Thanks
Bu çalışma Türkiye Bilimsel ve Teknik Araştırma Kurumu tarafından desteklenmiştir (Proje Numarası: 315M537-ERANETMED –SETPROPER Project).
Atıksu sağlanması konusunda yardımcı olan SUN Tekstil firmasına teşekkürlerimizi sunuyoruz.
References
- Akhavan, O., Bijanzad, K. ve Mirsepah, A. (2014). Synthesis of graphene from natural and industrial carbonaceous wastes. RSC Advances, 4(39), 20441–20448. https://doi.org/10.1039/c4ra01550a
- Ariyanti, D., Lesdantina, D., Budiyono ve Satriadi, H. (2021). Synthesis and characterization of graphene-like material derived from sugarcane bagasse. IOP Conference Series: Materials Science and Engineering, 1053(1), 012013. https://doi.org/10.1088/1757-899x/1053/1/012013
- Athanasiou, M., Yannopoulos, S. N. ve Ioannides, T. (2022). Biomass-derived graphene-like materials as active electrodes for supercapacitor applications: A critical review. Chemical Engineering Journal, 446, 137191. https://doi.org/10.1016/j.cej.2022.137191
- Bener, S., Bulca, Ö., Palas, B., Tekin, G., Atalay, S. ve Ersöz, G. (2019). Electrocoagulation process for the treatment of real textile wastewater: Effect of operative conditions on the organic carbon removal and kinetic study. Process Safety and Environmental Protection, 129, 47–54. https://doi.org/10.1016/j.psep.2019.06.010
- Berktas, I., Hezarkhani, M., Haghighi Poudeh, L. ve Saner Okan, B. (2020). Recent developments in the synthesis of graphene and graphene-like structures from waste sources by recycling and upcycling technologies: a review. Graphene Technology, 5(3–4), 59–73. https://doi.org/10.1007/s41127-020-00033-1
- Bisschops, I. ve Spanjers, H. (2003). Literature review on textile wastewater characterisation. Environmental Technology, 24(11), 1399–1411. https://doi.org/10.1080/09593330309385684
- Bukhari, A., Ijaz, I., Zain, H., Mehmood, U., Mudassir Iqbal, M., Gilani, E. ve Nazir, A. (2023). Introduction of CdO nanoparticles into graphene and graphene oxide nanosheets for increasing adsorption capacity of Cr from wastewater collected from petroleum refinery. Arabian Journal of Chemistry, 16(2), 104445. https://doi.org/10.1016/j.arabjc.2022.104445
- Chailuecha, C., Klinbumrung, A., Chaopanich, P. ve Sirirak, R. (2021). Graphene-like porous carbon nanostructure from corn husk: Synthesis and characterization. Materials Today: Proceedings, 47, 3525–3528. https://doi.org/10.1016/j.matpr.2021.03.512
- de Assis, L. K., Damasceno, B. S., Carvalho, M. N., Oliveira, E. H. C. ve Ghislandi, M. G. (2020). Adsorption capacity comparison between graphene oxide and graphene nanoplatelets for the removal of coloured textile dyes from wastewater. Environmental Technology, 41(18), 2360–2371. https://doi.org/10.1080/09593330.2019.1567603
- Emamjomeh, M. M. ve Sivakumar, M. (2009). Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes. Journal of Environmental Management, 90(5), 1663–1679. https://doi.org/10.1016/j.jenvman.2008.12.011
- Eyvaz, M., Bayramoğlu, M. ve Kobya, M. (2006). Tekstil endüstrisi atıksularının elektrokoagülasyon ile arıtılması: Teknik ve ekonomik değerlendirme. Su Kirlenmesi Kontrolü Dergisi, 16(1–3), 55–65. https://dergipark.org.tr/en/pub/skatmk/issue/65265/1004375
- Fan, X., Zhang, G. ve Zhang, F. (2015). Multiple roles of graphene in heterogeneous catalysis. Chemical Society Reviews, 44(10), 3023–3035. https://doi.org/10.1039/C5CS00094G
- Foo, K. Y. ve Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2–10. https://doi.org/10.1016/j.cej.2009.09.013
- GilPavas, E., Dobrosz-Gómez, I. ve Gómez-García, M. Á. (2017). Coagulation-flocculation sequential with Fenton or Photo-Fenton processes as an alternative for the industrial textile wastewater treatment. Journal of Environmental Management, 191, 189–197. https://doi.org/10.1016/j.jenvman.2017.01.015
- Guo, X., Qu, L., Tian, M., Zhu, S., Zhang, X., Tang, X. ve Sun, K. (2016). Chitosan/Graphene Oxide Composite as an Effective Adsorbent for Reactive Red Dye Removal. Water Environment Research, 88(7), 579–588. https://doi.org/10.2175/106143016X14609975746325
- Han, L., Zhang, P., Li, L., Lu, S., Su, B., An, X. ve Lei, Z. (2021). Nitrogen-containing carbon nano-onions-like and graphene-like materials derived from biomass and the adsorption and visible photocatalytic performance. Applied Surface Science, 543, 148752. https://doi.org/10.1016/j.apsusc.2020.148752
- Huang, B., Xia, M., Qiu, J. ve Xie, Z. (2019). Biomass Derived Graphene‐Like Carbons for Electrocatalytic Oxygen Reduction Reaction. ChemNanoMat, 5(5), 682–689. https://doi.org/10.1002/cnma.201900009
- Kavitha, D. ve Namasivayam, C. (2008). Capacity of activated carbon in the removal of acid brilliant blue: Determination of equilibrium and kinetic model parameters. Chemical Engineering Journal, 139(3), 453–461. https://doi.org/10.1016/j.cej.2007.08.011
- Khandegar, V. ve Saroha, A. K. (2013). Electrocoagulation for the treatment of textile industry effluent–A review. Journal of Environmental Management, 128, 949–963. https://doi.org/10.1016/j.jenvman.2013.06.043
- Kutluay, S. (2019). Benzen uçucu organik bileşiğinin badem kabuğundan üretilen char üzerine gaz fazı adsorpsiyonu: Kinetik, denge ve termodinamik. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 8(4), 1432–1445. https://doi.org/10.17798/bitlisfen.543583
- Lee, Y. N., Lago, R. M., Fierro, J. L. G. ve González, J. (2001). Hydrogen peroxide decomposition over Ln1−xAxMnO3 (Ln = La or Nd and A = K or Sr) perovskites. Applied Catalysis A: General, 215(1–2), 245–256. https://doi.org/10.1016/S0926-860X(01)00536-1
- Li, Y., Sun, J., Du, Q., Zhang, L., Yang, X., Wu, S., Xia, Y., Wang, Z., Xia, L. ve Cao, A. (2014). Mechanical and dye adsorption properties of graphene oxide/chitosan composite fibers prepared by wet spinning. Carbohydrate Polymers, 102, 755–761. https://doi.org/10.1016/j.carbpol.2013.10.094
- Liu, X., Sun, J., Duan, S., Wang, Y., Hayat, T., Alsaedi, A., Wang, C. ve Li, J. (2017). A Valuable Biochar from Poplar Catkins with High Adsorption Capacity for Both Organic Pollutants and Inorganic Heavy Metal Ions. Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598-017-09446-0
- Luo, H., Yu, S., Zhong, M., Han, Y., Su, B. ve Lei, Z. (2022). Waste biomass-assisted synthesis of TiO2 and N/O-contained graphene-like biochar composites for enhanced adsorptive and photocatalytic performances. Journal of Alloys and Compounds, 899, 163287. https://doi.org/10.1016/j.jallcom.2021.163287
- Manenti, D. R., Módenes, A. N., Soares, P. A., Espinoza-Quiñones, F. R., Boaventura, R. A. R., Bergamasco, R. ve Vilar, V. J. P. (2014). Assessment of a multistage system based on electrocoagulation, solar photo-Fenton and biological oxidation processes for real textile wastewater treatment. Chemical Engineering Journal, 252, 120–130. https://doi.org/10.1016/j.cej.2014.04.096
- Moitra, D., Dhole, S., Ghosh, B. K., Chandel, M., Jani, R. K., Patra, M. K., Vadera, S. R. ve Ghosh, N. N. (2017). Synthesis and Microwave Absorption Properties of BiFeO3 Nanowire-RGO Nanocomposite and First-Principles Calculations for Insight of Electromagnetic Properties and Electronic Structures. The Journal of Physical Chemistry C, 121(39), 21290–21304. https://doi.org/10.1021/acs.jpcc.7b02836
- Moussa, D. T., El-Naas, M. H., Nasser, M. ve Al-Marri, M. J. (2017). A comprehensive review of electrocoagulation for water treatment: Potentials and challenges. Journal of Environmental Management, 186, 24–41. https://doi.org/10.1016/j.jenvman.2016.10.032
- Naje, A. S., Chelliapan, S., Zakaria, Z. ve Abbas, S. A. (2015). Treatment performance of textile wastewater using electrocoagulation (EC) process under combined electrical connection of electrodes. International Journal of Electrochemical Science, 10(7), 5924–5941. http://www.electrochemsci.org/papers/vol10/100705924.pdf
- Ozyonar, F. ve Karagozoglu, B. (2012). Systematic assessment of electrocoagulation for the treatment of marble processing wastewater. International Journal of Environmental Science and Technology, 9(4), 637–646. https://doi.org/10.1007/s13762-012-0093-z
- Pastrana-Martínez, L. M., Morales-Torres, S., Likodimos, V., Figueiredo, J. L., Faria, J. L., Falaras, P. ve Silva, A. M. T. (2012). Advanced nanostructured photocatalysts based on reduced graphene oxide–TiO2 composites for degradation of diphenhydramine pharmaceutical and methyl orange dye. Applied Catalysis B: Environmental, 123–124, 241–256. https://doi.org/10.1016/j.apcatb.2012.04.045
- Patel, H. ve Vashi, R. T. (2010). Treatment of textile wastewaterby adsorption and coagulation. Journal of Chemistry, 7(4), 1468–1476. https://doi.org/10.1155/2010/987620
- Peng, W., Li, H., Liu, Y. ve Song, S. (2016). Adsorption of methylene blue on graphene oxide prepared from amorphous graphite: Effects of pH and foreign ions. Journal of Molecular Liquids, 221, 82–87. https://doi.org/10.1016/j.molliq.2016.05.074
- Pera-Titus, M., Garcı́a-Molina, V., Baños, M. A., Giménez, J. ve Esplugas, S. (2004). Degradation of chlorophenols by means of advanced oxidation processes: a general review. Applied Catalysis B: Environmental, 47(4), 219–256. https://doi.org/10.1016/j.apcatb.2003.09.010
- Preetha, R., Govinda raj, M., Vijayakumar, E., Narendran, M. G., Varathan, E., Neppolian, B., Jeyapaul, U. ve John Bosco, A. (2022). Promoting photocatalytic interaction of boron doped reduced graphene oxide supported BiFeO3 nanocomposite for visible-light-induced organic pollutant degradation. Journal of Alloys and Compounds, 904, 164038. https://doi.org/10.1016/j.jallcom.2022.164038
- Rajaura, R. S., Srivastava, S., Sharma, V., Sharma, P. K., Lal, C., Singh, M., Palsania, H. S. ve Vijay, Y. K. (2016). Role of interlayer spacing and functional group on the hydrogen storage properties of graphene oxide and reduced graphene oxide. International Journal of Hydrogen Energy, 41(22), 9454–9461. https://doi.org/10.1016/j.ijhydene.2016.04.115
- Rivera‐Utrilla, J., Bautista‐Toledo, I., Ferro‐García, M. A. ve Moreno‐Castilla, C. (2001). Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption. Journal of Chemical Technology & Biotechnology, 76(12), 1209–1215. https://doi.org/10.1002/jctb.506
- Sanei, A., Dashtian, K., Yousefi Seyf, J., Seidi, F. ve Kolvari, E. (2023). Biomass derived reduced-graphene-oxide supported α-Fe2O3/ZnO S-scheme heterostructure: Robust photocatalytic wastewater remediation. Journal of Environmental Management, 332, 117377. https://doi.org/10.1016/j.jenvman.2023.117377
- Sarwar, Z., Tichonovas, M., Krugly, E., Masione, G., Abromaitis, V. ve Martuzevicius, D. (2021). Graphene oxide loaded fibrous matrixes of polyether block amide (PEBA) elastomer as an adsorbent for removal of cationic dye from wastewater. Journal of Environmental Management, 298, 113466. https://doi.org/10.1016/j.jenvman.2021.113466
- Sawant, S. A., Patil, A. V., Waikar, M. R., Rasal, A. S., Dhas, S. D., Moholkar, A. V., Vhatkar, R. S. ve Sonkawade, R. G. (2022). Advances in chemical and biomass-derived graphene/graphene-like nanomaterials for supercapacitors. Journal of Energy Storage, 51, 104445. https://doi.org/10.1016/j.est.2022.104445
- Shalini Reghunath, B., Rajasekaran, S., Devi K R, S., Saravanakumar, B., William, J. J., Pinheiro, D., Govindarajan, D. ve Kheawhom, S. (2022). Fabrication of bismuth ferrite/graphitic carbon nitride/N-doped graphene quantum dots composite for high performance supercapacitors. Journal of Physics and Chemistry of Solids, 171, 110985. https://doi.org/10.1016/j.jpcs.2022.110985
- Shi, Y., Song, G., Li, A., Wang, J., Wang, H., Sun, Y. ve Ding, G. (2022). Graphene oxide-chitosan composite aerogel for adsorption of methyl orange and methylene blue: Effect of pH in single and binary systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 641, 128595. https://doi.org/10.1016/j.colsurfa.2022.128595
- Sitko, R., Turek, E., Zawisza, B., Malicka, E., Talik, E., Heimann, J., Gagor, A., Feist, B. ve Wrzalik, R. (2013). Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Transactions, 42(16), 5682. https://doi.org/10.1039/c3dt33097d
- Surekha, G., Krishnaiah, K. V., Ravi, N. ve Padma Suvarna, R. (2020). FTIR, Raman and XRD analysis of graphene oxide films prepared by modified Hummers method. Journal of Physics: Conference Series, 1495(1), 012012. https://doi.org/10.1088/1742-6596/1495/1/012012
- Vilar, V. J. P., Pinho, L. X., Pintor, A. M. A. ve Boaventura, R. A. R. (2011). Treatment of textile wastewaters by solar-driven advanced oxidation processes. Solar Energy, 85(9), 1927–1934. https://doi.org/10.1016/j.solener.2011.04.033
- Wang, J., Salihi, E. C. ve Šiller, L. (2017). Green reduction of graphene oxide using alanine. Materials Science and Engineering: C, 72, 1–6. https://doi.org/10.1016/j.msec.2016.11.017
- Wang, S. ve Peng, Y. (2010). Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal, 156(1), 11–24. https://doi.org/10.1016/j.cej.2009.10.029
- Xiao, J., Xie, Y. ve Cao, H. (2015). Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation. Chemosphere, 121, 1–17. https://doi.org/10.1016/j.chemosphere.2014.10.072
- Xiao, X., Chen, B., Zhu, L. ve Schnoor, J. L. (2017). Sugar Cane-Converted Graphene-like Material for the Superhigh Adsorption of Organic Pollutants from Water via Coassembly Mechanisms. Environmental Science & Technology, 51(21), 12644–12652. https://doi.org/10.1021/acs.est.7b03639
- Zhao, G., Li, J., Ren, X., Chen, C. ve Wang, X. (2011). Few-Layered Graphene Oxide Nanosheets As Superior Sorbents for Heavy Metal Ion Pollution Management. Environmental Science & Technology, 45(24), 10454–10462. https://doi.org/10.1021/es203439v
- Zhao, G., Ren, X., Gao, X., Tan, X., Li, J., Chen, C., Huang, Y. ve Wang, X. (2011). Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Transactions, 40(41), 10945. https://doi.org/10.1039/c1dt11005e
- Zhao, Z., Zhou, W., Lin, D., Zhu, L., Xing, B. ve Liu, Z. (2022). Construction of dual active sites on diatomic metal (FeCo−N/C-x) catalysts for enhanced Fenton-like catalysis. Applied Catalysis B: Environmental, 309, 121256. https://doi.org/10.1016/j.apcatb.2022.121256
- Zhou, Y., He, J., Chen, R. ve Li, X. (2022). Recent advances in biomass-derived graphene and carbon nanotubes. Materials Today Sustainability, 18, 100138. https://doi.org/10.1016/j.mtsust.2022.100138